Catalog HG 11.03 · 2007 ## 3AH1/3AH3 Vacuum Circuit-Breakers Medium-Voltage Equipment Selection and Ordering Data ## 3AH1/3AH3 Vacuum **Circuit-Breakers** Medium-Voltage Equipment Catalog HG 11.03 · 2007 Invalid: Catalog HG 11.11 · 1999, Part 2 and Catalog HG 11.12 · 2005, Part 2 | Contents | Page | |---|------| | Description | 5 | | General | 6 | | Construction and mode of operation, standards | 7 | | Ambient conditions, current carrying capacity | | | and dielectric strength | 9 | | Product range overview and basic equipment | 10 | **Equipment Selection** 11 Ordering data and configuration example 12 Selection of basic types, circuit-breakers 13 Selection of secondary equipment 16 Selection of additional equipment 23 Accessories and spare parts 24 **Technical Data** 29 Electrical data, dimensions and weights 30 Circuit diagrams 38 Operating times, short-circuit protection of motors, consumption data of releases 40 Annex 41 Inquiry form 42 Configuration instructions 43 Configuration aid Foldout page © Siemens AG 2007 Industrial application: Refinery | Contents | Page | |-------------------------------------|------| | Description | 5 | | General | 6 | | Construction and mode of operation: | | | Switching medium | 7 | | Pole assemblies | 7 | | Operating mechanism box | 7 | | Operating mechanism | 7 | | Trip-free mechanism | 7 | | Releases | 8 | | Closing | 8 | | Circuit-breaker tripping signal | 8 | | Interlocking | 8 | | Standards | 8 | | Ambient conditions | 9 | | Current carrying capacity | 9 | | Dielectric strength | 9 | | Product range overview | 10 | | Basic equipment | 10 | | | | # 3AH1 and 3AH3 vacuum circuit-breakers from 7.2 to 36 kV – The Powerful Circuit-breakers must make and break all currents within the scope of their ratings: From small inductive and capacitive load currents up to high short-circuit currents, controlling all fault conditions in the power system at the same time. 3AH1 - the all-rounder in the product range 3AH3 - maintenance-free for high switching capacities The 3AH1 vacuum circuit-breaker is the universal circuit-breaker: It combines all system and product advantages of the 3AH series, which are decisive for most applications. With 10,000 operating cycles it covers the customary medium-voltage range from 7.2 to 24 kV and is maintenance-free throughout its entire service life. Due to its compact design, panel widths of 600 mm are possible at 12 kV. The clear layout of the operating mechanism enables fast access to all components. Therefore, retrofitting of secondary equipment is also possible. Note: The 3AH1 vacuum circuit-breaker will be discontinued by December 31, 2007. As of January 1, 2008, Siemens will offer this circuit-breaker type for another 10 years for replacement purposes only. We recommend to design new switchgear with circuit-breaker types SION or 3AH5. The 3AH3 vacuum circuit-breaker is maintenance-free throughout its entire service life. It is extremely powerful and controls up to 10,000 operating cycles. This circuit-breaker is used for high load currents up to 6300 A and high short-circuit currents up to 72 kA as well as for rated voltages up to 36 kV. Due to its high capacity, the circuit-breaker is especially suitable for generator operation and industrial applications. Just like 3AH1, the type 3AH3 meets the requirements of medium-voltage switchgear according to IEC. The vacuum circuit-breaker consists of the pole assemblies (1) and the operating mechanism box (2). The pole assemblies are fixed to the operating mechanism box via post insulators (3). The switching movement is transferred by means of operating rods (4) and levers. #### Switching medium The vacuum switching technology, proven and fully developed for more than 30 years, serves as arc-quenching principle by using vacuum interrupters. #### Pole assemblies The pole assemblies consist of the vacuum interrupters (6) and the interrupter supports. The vacuum interrupters are air-insulated and freely accessible. This makes it possible to clean the insulating parts easily in adverse ambient conditions. The vacuum interrupter is mounted rigidly to the upper interrupter support (5). The lower part of the interrupter is guided in the lower interrupter support (7), allowing axial movement. The braces absorb the external forces resulting from switching operations and the contact pressure. #### Operating mechanism box The whole operating mechanism with releases, auxiliary switches, indicators and actuating devices is accommodated in the operating mechanism box. The extent of the secondary equipment depends on the case of application and offers a multiple variety of options in order to meet almost every requirement. #### Operating mechanism The operating mechanism is a stored-energy mechanism. The closing spring is charged either electrically or manually. It latches tight at the end of the charging process and serves as an energy store. The force is transmitted from the operating mechanism to the pole assemblies via operating levers. To close the breaker, the closing spring can be unlatched either mechanically by means of the local "ON" pushbutton or electrically by remote control. The closing spring charges the opening or contact pressure springs as the breaker closes. The now discharged closing spring will be charged again automatically by the mechanism motor or manually. Then the operating sequence OPEN-CLOSE-OPEN is stored in the springs. The charging state of the closing spring can be checked electrically by means of a position switch. #### Trip-free mechanism 3AH1/3AH3 vacuum circuit-breakers have a trip-free mechanism according to IEC 62271-100. In the event of an opening command being given after a closing operation has been initiated, the moving contacts return to the open position and remain there even if the closing command is sustained. This means that the contacts of the vacuum circuit-breakers are momentarily in the closed position, which is permissible according to IEC 62271-100. Open operating mechanism box #### Releases A release is a device which transfers electrical commands from an external source, such as a control room, to the latching mechanism of the vacuum circuit-breaker so that it can be opened or closed. The maximum possible equipment is one shunt release and two other releases. For release combinations, refer to page 16. - <u>The closing solenoid</u> unlatches the charged closing spring of the vacuum circuit-breaker, closing it by electrical means. - <u>Shunt releases</u> are used for automatic tripping of vacuum circuit-breakers by suitable protection relays and for deliberate tripping by electrical means. They are intended for connection to an external power supply (DC or AC voltage) but, in special cases, may also be connected to a voltage transformer for manual operation. - <u>Current-transformer operated releases</u> comprise a storedenergy mechanism, an unlatching mechanism and an electromagnetic system. They are used when there is no external source of auxiliary power (e.g. a battery). Tripping is effected by means of a protection relay (e.g. overcurrent-time protection) acting on the current-transformer operated release. - <u>Undervoltage releases</u> comprise a stored-energy mechanism, an unlatching mechanism and an electromagnetic system which is permanently connected to the secondary or auxiliary voltage while the vacuum circuit-breaker is closed. If the voltage falls below a predetermined value, unlatching of the release is enabled and the circuit-breaker is opened via the stored-energy mechanism. The deliberate tripping of the undervoltage release generally takes place via an NC contact in the tripping circuit or via an NO contact by short-circuiting the magnet coil. With this type of tripping, the short-circuit current is limited by the built-in resistors. Undervoltage releases can also be connected to voltage transformers. When the operating voltage drops to impermissibly low levels, the circuit-breaker is tripped automatically. For delayed tripping, the undervoltage release can be combined with energy stores. #### Closing In the standard version, 3AH1/3AH3 vacuum circuit-breakers can be remote-closed electrically. They can also be closed locally by mechanical unlatching of the closing spring via pushbutton. Instead of this "manual mechanical closing", "manual electrical closing" is also available. In this version, the closing circuit of the circuit-breaker is controlled electrically by an electrical pushbutton instead of the mechanical button. In this way, switchgear-related interlocks can also be considered for local operation in order to prevent involuntary closing. If constant CLOSE and OPEN commands are present at the vacuum circuit-breaker at the same time, the vacuum circuit-breaker will return to the open position after closing. It remains in this position until a new CLOSE command is given. In this manner, continuous closing and opening (= "pumping") is prevented. #### Circuit-breaker tripping signal The NO contact makes brief contact while the vacuum circuit-breaker is opening, and this is often used to operate a hazard-warning system which, however, is only allowed to respond to automatic tripping of the circuit-breaker. Therefore, the signal from the NO contact must be interrupted when the circuit-breaker is being opened intentionally. This is accomplished under local control with the cut-out switch that is connected in series with the NO contact. #### Interlocking #### **Electrical interlocking** The circuit-breakers can be integrated in electromagnetic feeder or switchgear interlocks. In case of electrical interlocking, the disconnector or its operating mechanism is equipped with a magnetic lock-out mechanism. This mechanism is controlled by an auxiliary contact of the circuit-breaker, so that the disconnector can only be operated when the circuit-breaker is open. On the other hand, the circuit-breaker is
also controlled by the disconnector or its operating mechanism, so that it can only be closed when the disconnector in an end position. For this purpose, manual electrical closing must be provided in the circuit-breaker operating mechanism (see "Closing"). #### Mechanical interlocking To interlock circuit-breaker trucks, withdrawable parts or disconnectors according to the switch position, the circuit-breakers can be equipped with a mechanical interlocking. A sensor at the switchgear checks the position of the circuit-breaker and prevents the open circuit-breaker in a reliable way from being closed mechanically and electrically. #### Standards 3AH1 and 3AH3 vacuum circuit-breakers conform to the following standards: - IEC 62271-100 (former IEC 60056) - IEC 60694 (in future IEC 62271-1) - VDE 0671 (former VDE 0670) - IEEE Std C37.013 (only generator circuit-breaker) #### **Ambient conditions** The vacuum circuit-breakers are designed for the normal operating conditions defined in IEC 62271-100. Condensation can occasionally occur under the ambient conditions shown opposite. 3AH1/3AH3 vacuum circuitbreakers are suitable for use in the following climatic classes according to IEC 60721, Part 3-3: Climatic ambient conditions: Class 3K4 ¹⁾ Biological ambient conditions: Class 3B1 Mechanical ambient conditions: Class 3M2 Chemically-active substances: Class 3C2 ²⁾ Mechanically-active substances: Class 3S2 ³⁾ - 1) Low temperature limit: -5 °C - 2) Without icing and wind-driven precipitation - 3) Restriction: Clean insulation parts #### **Current carrying capacity** The rated normal currents specified in the opposite diagram have been defined according to IEC 62271-100 for an ambient temperature of $+40\,^{\circ}\text{C}$ and apply to open switchgear. For enclosed switchgear the data of the switchgear manufacturer applies. At ambient temperatures below $+40\,^{\circ}\text{C}$, higher normal currents can be carried (see diagram): Characteristics curve $1 \cong \text{Rated}$ normal current 1250 A Characteristics curve $2 \cong \text{Rated}$ normal current 2000 A Characteristics curve $3 \cong \text{Rated}$ normal current 2500 A Characteristics curve $4 \cong \text{Rated}$ normal current 3150 A Characteristics curve $5 \cong \text{Rated}$ normal current 4000 A Characteristics curve $6 \cong \text{Rated}$ normal current 5000 A Characteristics curve $7 \cong \text{Rated}$ normal current 6300 A #### Dielectric strength The dielectric strength of air insulation decreases with increasing altitude due to low air density. According to IEC 60694, the rated lightning impulse withstand voltage values specified in the chapter "Technical Data" apply to a site altitude of 1000 m above sea level. For an altitude above 1000 m, the insulation level must be corrected according to the opposite diagram. The characteristic shown applies to the rated short-duration power-frequency withstand voltage and the rated lightning impulse withstand voltage. To select the devices, the following applies: $U \ge U_0 \times K_a$ - U Rated withstand voltage under standard reference atmosphere - U_0 Rated withstand voltage requested for the place of installation - K_a Altitude correction factor according to the opposite diagram #### Example For a requested rated lightning impulse withstand voltage of 75 kV at an altitude of 2500 m, an insulation level of 90 kV under standard reference atmosphere is required as a minimum: $90 \text{ kV} \ge 75 \text{ kV} \times 1.2$ | де | -
cing | | | | | | Rated r | ormal curr | ent (A) | | | | | | |---------------|---|-----|------|-----|-----|-----|----------|--------------|---------|-----|----------|----------|----------|----------| | voltao | short
break
ıt | | 1250 | | 20 | 00 | | 2500 | | 31 | 50 | 4000 | 5000 | 6300 | | Rated voltage | Rated short-
circuit breaking
current | | | | | | Pole-cer | nter distand | ce (mm) | | | | | | | kV | kA | 210 | 275 | 350 | 210 | 350 | 210 | 275 | 350 | 210 | 275 | 275 | 300 | 300 | | 7.2 | 40 | | | | | | | | | | | | | | | | 50 | | | | | | | | | | | | | | | | 63 | | | | | | | | | | | | | | | 12 | 40 | | | | | | | | | | | | | | | | 50 | | | | | | | | | | | | | | | | 63 | | | | | | | - | | | - | | | | | 15 | 40 | | | | | | | | | | | | | | | | 50 | - | | | | | | | | - | | | | | | | 63 | | _ | | | | | • | | | _ | _ | | | | 17.5 | 31.5 | | | | | | | | | | | | | | | | 40 | | | | | | | | | | | | | | | | 50 | | | | | | | | | | A | | A | A | | | 63 | | • | | | | | • | | | | | A | A | | | 72 | | | | | | | | | | A | A | A | A | | 24 | 40 | | | | | | | • | | | | | | | | 36 | 31.5 | | | | | | | | | | | | | | | | 40 | | | | | | | | | | | | | | ¹⁾ The 3AH1 vacuum circuit-breaker will be discontinued by December 31, 2007, and will then only be available as spare circuit-breaker ### Basic equipment | ic equipment | | | | |--|--|--|---| | Features | Minimum equipment | Alternative equipment | Remarks | | Operating mechanism | Electrical operating mechanism | Manual operating mechanism
(hand crank included in the scope of supply) | Hand crank also available as accessory | | Closing | Closing solenoid and manual mechanical closing | Manual electrical closing | - | | 1st release | Shunt release | None | _ | | 2 nd release | Without | Shunt release,
undervoltage release,
c.toperated release | Max. 3 releases can be combined
(for possible combinations,
refer to page 16) | | 3 rd release | Without | Undervoltage release,
c.toperated release | Max. 3 releases can be combined
(for possible combinations,
refer to page 16) | | Varistor circuit | Installed for \geq 60 V DC | None | For limiting switching overvoltag due to inductive loads | | Auxiliary switch | 6 NO + 6 NC | 12 NO + 12 NC | 12 NO + 12 NC not available with 24-pole plug | | Plug connector | 24-pole terminal strip | 24-pole plug,
64-pole plug | 24-pole plug
not together with 12 NO + 12 NC | | Anti-pumping | Available | None | _ | | Circuit-breaker
tripping signal | Available | None | - | | Operating cycle counter | Available | None | _ | | "Spring charged" signal and indication | Available | None | - | | Interlocking | Without | Mechanical interlocking | _ | Page 3AH1 vacuum circuit-breaker 3AH3 (4000 A) vacuum circuit-breaker | Equipment Selection | 11 | |---|----| | Ordering data and configuration example | 12 | | Selection of basic types, circuit-breakers: | | | Voltage level 7.2 kV | 13 | | Voltage level 12 kV | 13 | | Voltage level 15 kV | 14 | | Voltage level 17.5 kV | 14 | | Voltage level 24 kV | 15 | | Voltage level 36 kV | 15 | | High-current and generator circuit-breakers:
Voltage level 17.5 kV | 15 | | Selection of secondary equipment: | | | Release combination | 16 | | Operating voltage, closing solenoid | 17 | | Operating voltage, 1st shunt release | 18 | | Operating voltage, 2 nd release | 19 | | Operating voltage, 3 rd release | 20 | | Operating voltage of the operating mechanism | 21 | | Auxiliary switch, secondary connection, interlocking | 22 | | Languages and frequency | 22 | | | | | Selection of additional equipment | 23 | | Accessories and spare parts | 24 | Contents #### Order number structure The vacuum circuit-breakers consist of a primary and a secondary part. The relevant data make up the 16-digit order number. The primary part covers the main electrical data of the circuit-breaker poles. The secondary part covers the auxiliary devices which are necessary for operating and controlling the vacuum circuit-breaker. #### Order codes Individual equipment versions, marked with **9** or **Z** in the 9th or 16th position, are explained more in detail by a 3-digit order code. Several order codes can be added to the order number in succession and in any sequence. #### Special versions (★) In case of special versions, "-Z" is added to the order number and a descriptive order code follows. If several special versions are required, the suffix "-Z" is listed only once. If a requested special version is not in the catalog and can therefore not be ordered via order code, it has to be identified with Y 9 9 after consultation. The agreement hereto is made between your responsible sales partner and the order processing department (PTD M C S) in our Switchgear Factory in Berlin. #### Configuration example In order to simplify the selection of the correct order number for the requested circuit-breaker type, you will find a configuration example on each side of the chapter "Equipment Selection". For the selection of the secondary part, always the last example of the primary part was taken over and continued, so that at the end of the equipment selection (page 23) a completely configured circuit-breaker results as an example. On the foldout page we offer a configuring aid. Here you can fill in the order number you have determined for your circuit-breaker. | 15 kV | | | | | F | Position: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | _ | 8 | 9 | 10 | 11 | 12 | _ | 13 | 14 | 15 | 16 | | | Orc | der co | des | |------------------------------|---|---|---|--|----------------------|----------------------------|---|---|---|---|---|---|--------|---|---|-------------|-------------|-------------|-------------|---|-------------|-------------
-------------|-------------|---|-------------|-----|--------|-----| | 50/60 Hz | | | | | Ord | er No.: | 3 | Α | Н | | | | | - | | | | | | - | | | | | - | * | | | | | Rated voltage | Rated lightning impulse
withstand voltage | Rated short-duration
power-frequency
withstand voltage | Rated short-circuit
breaking current
at 36 % DC component | Rated short-circuit
making current
(at 50/60 Hz) | Pole-center distance | Rated normal current | | | | | | | | | | See page 16 | See page 17 | See page 18 | See page 19 | | See page 20 | See page 21 | See page 22 | See page 22 | | See page 23 | | | | | | | | | 8 E @ | A | | | | | | | | | | | Š | SS | Š | SS | | S | S | S | S | | Se | | | | | U _r | $U_{\rm p}$ | $U_{\rm d}$ | I_{SC} | I_{ma} | | I_{r} | kV | kV | kV | kA | kA | mm | Α | 15 | 95 | 36 | 40 | 100/104 | 210 | 1250 | 3 | A | Н | | 1 | 6 | 6 | _ | 2000
2500 | 3 | A | H | 1 | 1 | 6 | 6 | | 4 | 3150 | 3 | Α | Н | 1 | 1 | 6 | 6 | _ | 7 | | | | | | | | | | | | | | | | | | | 50 | 125/130 | 210 | 1250 | 3 | Α | Н | 3 | 1 | 6 | 7 | _ | 2 | 2500 | 3 | Α | Н | 3 | 1 | 6 | 7 | - | 6 | 275 | 3150 | 3 | A | Н | 3 | 1 | 6 | 7 | | 7 | | | | | | | | | | | | | | | | | | | 63 | 160/164 | 275
275 | 4000 ¹⁾
1250 | 3 | A | H | 3 | 1 | 7 | 7
8 | | 8 | | | | | | | | | | | | | | | | | | | 05 | 100/104 | 2/3 | 2500 | 3 | A | Н | 3 | 1 | 7 | 8 | _ | 6 | 3150 | | Α | н | 3 | 1 | 7 | 8 | - | 7 | 4000 1) | 3 | Α | Н | 3 | 1 | 7 | 8 | - | 8 | | | | | | | | | | | | | | | | Special ve | rsion (avail | lable for all $U_d = 42 \text{ kV}$ | 15 kV circui | t-breakers) | _ | Z | Е | 1 | 3 | | | | O _d - 12 KV | _ | Ì | ė | | | 17.5 k
50/60 Hz | U _p | U_{d} | I_{SC} | I _{ma} | | I_{r} | kV | kV | kV | kA | kA | mm | Α | 17.5 | 95 | 38 | 31.5 | 80/82 | 210 | 3150 | 3 | Δ | Н | 1 | 2 | 1 | 5 | _ | 7 | | | | | | | | | | | | | | | | 1715 | ,,, | 30 | 40 | 100/104 | 210 | 1250 | 3 | Α | Н | 1 | 2 | 1 | 6 | _ | 2 | 2000 | 3 | Α | Н | 1 | 2 | 1 | 6 | Ξ | 4 | 2500 | 3 | Α | Н | 1 | 2 | 1 | 6 | - | 6 | | | | | | | | | | | | | | | | | | | 50 | 125/130 | 210 | 3150
1250 | 3 | A | H | 1 | 2 | 1 | 7 | | 7 | | | | | | | | | | | | | | | | | | | 50 | 125/130 | 210 | 2500 | | A | Н | 3 | 2 | 1 | 7 | _ | 6 | 3150 | | | Н | | | 1 | | | 7 | 275 | 4000 1) | | | | | | 2 | 63 | 160/164 | 275 | 1250 | 3 | Α | Н | 3 | 2 | 2 | 8 | - | 2 | 2500
3150 | 3 | | | 3 | | 2 | 8 | _ | 7 | 4000 ¹⁾ | | A | Н | 3 | | 2 | 8 | | 8 | Special ve | | | 17.5 kV circ | uit-breakers | 5) | _ | 7 | _ | 1 | 2 | | | | $U_{\rm d}$ = 42 kV | _ | _ | | Ė | 3 | | for I _r = peratur | 4500 A unit $\text{re} \leq 40 ^{\circ}\text{C}$, $100 \times 10 ^{\circ}\text{m}$ cuit-breake $\text{ge } U_{\text{r}} = 17.1$ | der the follo
free air circ
m per phase
ble
er
5 kV, 50/60
se withstand | owing cond
ulation and
e as a minir
Hz
d voltage <i>U</i> | _p = 95 kV | ent air tem | - | 3 | Α | Н | Pole-center | | | sc – 03 k | - • | Rated norm | | | | | | | | | | 3 | 2 | 2 | 8 | - | 8 | Evar | mple for Or | der No | 3 | Α | Н | 3 | 2 | 2 | 8 | _ | 8 | | | | | _ | | | | | | | | | | | | | | | LAGI | - | er codes: | 0.00 | daning voice | ge of the closir | ng solenoid | Position:
Order No.: | | 3 4
H = | 5 6 | 7 - | - 8
- - | 9 10 | 11 | | - 13
- - | | 15 1 | - | | Orde | ı | |--|---|--------------------|-------------------------|-------|------------|-----|-----|-------------------|------|-------------|-------------|--------------------|-------------|-------------|-------------|-------------|------|---| | | | | | | | | | | | 00 | 6 | 0 | _ | 2 | 7 | C) | | | | Standard volt | agos | Special voltag | 105 | | | | | | | ge 1 | ge 1 | ge 2 | | | | Staridard voit | ayes | Special Voltag | jes | | | | | | | See page 18 | See page 19 | See page 20 | See page 21 | See page 22 | See page 22 | See page 23 | | | | Machanical cl | osing at the circuit | hroakor | | | | | | | | Š | Š | Š | Š | Ŋ, | Š | S | | | | 24 V DC | osing at the circuit | -breaker | | | | | | | В | | | | | | | | | | | 48 V DC | | | | | | | | | C | | | | | | | | | | | 60 V DC | | | | | | | | | D | | | | | | | | | | | 110 V DC | | | | | | | | | Е | | | | | | | | | | | 220 V DC | | | | | | | | | F | | | | | | | | | | | 100 V AC | 50/60 Hz ¹⁾ | | | | | | | | Н | | | | | | | | | | | 110 V AC | 50/60 Hz ¹⁾ | | | | | | | | J | | | | | | | | | | | 230 V AC | 50/60 Hz ¹⁾ | | | | | | | | K | | | | | | | | | | | | | 30 V DC | | | | | | | Z | | | With | order | r code | е | | K | | | | | 32 V DC | | | | | | | Z | | | With | order | r code | е | | K | | | | | 120 V DC | | | | | | | Z | | | With | order | r code | е | | K | • | | | | 125 V DC | | | | | | | Z | | | With | order | r code | е | | | | | | | 127 V DC | | | | | | | Z | | | With | order | r code | е | | K | | | | | 240 V DC | | | | | | | Z | | | With | order | r code | е | | _ | | | | | 120 V AC | 50/60 Hz ¹⁾ | | | | | | Z | | | With | order | r code | е | | K | | | | | 125 V AC | 50/60 Hz ¹⁾ | | | | | | Z | | | With | order | r code | е | | | | | | | 240 V AC | 50/60 Hz ¹⁾ | | | | | | Z | | | With | order | r code | е | | K | | | | ical closing at the | circuit-breaker | | | | | | | | | | | | | | | | | | 24 V DC | | | | | | | | | M | | | | | | | | | | | 48 V DC | | | | | | | | | N | | | | | | | | | | | 60 V DC | | | | | | | | | P | | | | | | | | | | | 110 V DC | | | | | | | | | Q | | | | | | | | | | | 220 V DC | | | | | | | | | R | | | | | | | | | | | 100 V AC | 50/60 Hz ¹⁾ | | | | | | | | Т | | | | | | | | | | | 110 V AC | 50/60 Hz ¹⁾ | | | | | | | | U | | | | | | | | | | | 230 V AC | 50/60 Hz ¹⁾ | | | | | | | | V | | | | | | | | | | | | | 30 V DC | | | | | | | Z | | | With | | | | | | | | | | 32 V DC | | | | | | | Z | | | With | | | | | | | | | | 120 V DC | | | | | | | Z | | | With | | | | | | | | | | 125 V DC | | | | | | | Z | | | With | | | | | _ | | | | | 127 V DC | | | | | | | Z | | | With | | | | | | | | | | 240 V DC | =0/50 / L /\ | | | | | | Z | | | With | | | | | K | | | | | 120 V AC | 50/60 Hz ¹⁾ | | | | | | Z | | | With | | | | | | | | | | 125 V AC | 50/60 Hz ¹⁾ | | | | | | Z | | | With | | | | | | | | | | 240 V AC | 50/60 Hz ¹⁾ | | | | | | Z | | | With | order | code | 9 | | K | | | der number t | ogether with the la | nguage (see page 2 | 2) | | | | | | | | | | | | | | | | | | - | 40 14 7 2500 | | 3 A I | Н | | | | | | | | | | | | | | | center distand
Ial electrical c | Hz, $U_p = 170 \text{ kV}$, I_s is $e = 350 \text{ mm}$) losing at the circuit of the closing soler | t-breaker, | A, | | 3 | 3 0 | 6 - | - 6 | SZ | | | | | | | | K | | | um circuit-bre
36 kV, 50/60
center distanc | e = 350 mm) | t-breaker, | A, | | 3 | 3 0 | 6 - | - 6 | | | | | | | | | K | | **Equipment Selection**Selection of secondary equipment | 11 th position
Operating voltage of the 1 st shu | ınt release | Position:
Order No.: | 1 | 2
A | 3
H | 4 | 5 | 6 | 7 – | 8 | 9 | 10 | 11 | 12 | - 13
- • | 14 | 15 | 16 | - | * | Orde | | des | |---|------------------|-------------------------|---|---------------|---------------|---|---|---|-----|---|---|----|----|-------------|--------------------|-------------|-------------|-------------|---|-------------|------|---|-----| | Standard voltages | Special voltages | | | | | | | | | | | | | See page 19 | See page 20 | See page 21 | See page 22 | See page 22 | | See page 23 | | | | | 24 V DC | | | | | | | | | | | | | 1 | | | | | | | | | | | | 48 V DC | | | | | | | | | | | | | 2 | | | | | | | | | | | | 60 V DC | | | | | | | | | | | | | 3 | | | | | | | | | | | | 110 V DC | | | | | | | | | | | | | 4 | | | | | | | | | | | | 220 V DC | | | | | | | | | | | | | 5 | | | | | | | | | | | | 100 V AC 50/60 Hz ¹⁾ | | | | | | | | | | | | | 6 | | | | | | | | | | | | 110 V AC 50/60 Hz ¹⁾ | | | | | | | | | | | | | 7 | | | | | | | | | | | | 230 V AC 50/60 Hz ¹⁾ | | | | | | | | | | | | | 8 | | | | | | | | | | | | | 30 V DC | | | | | | | | | | | | 9 | | Wit | h or | der d | ode | | | L | 1 | Α | | | 32 V DC | | | | | | | | | | | | 9 | | Wit | h or | der d | ode | | | L | 1 | В | | | 120 V DC | | | | | | | | | | | | 9 | | Wit | h or | der d | ode | | | L | 1 | C | | | 125 V DC | | | | | | | | | | | | 9 | | Wit | h or | der d | ode | | | L | 1 | D | | | 127 V DC | | | | | | | | | | | | 9 | | Wit | h or | der d | ode | | | L | 1 | Ε | | | 240 V DC | | | | | | | | | | | | 9 | | Wit | h or | der d | ode | | | L | 1 | F | | | 120 V AC | 50/60 Hz ¹⁾ | | | | | | | | | | | 9 |
 Wit | h or | der d | ode | | | L | 1 | K | | | 125 V AC | 50/60 Hz ¹⁾ | | | | | | | | | | | 9 | | Wit | h or | der d | ode | | | L | 1 | L | | | 240 V AC | 50/60 Hz ¹⁾ | | | | | | | | | | | 9 | | Wit | h or | der d | ode | | | L | 1 | М | ¹⁾ The AC frequency 50 or 60 Hz is selected at the 16^{th} position of the order number together with the language (see page 22) Configuration example Vacuum circuit-breaker $(U_{\rm r}$ = 36 kV, 50/60 Hz, $U_{\rm p}$ = 170 kV, $I_{\rm sc}$ = 40 kA, $I_{\rm r}$ = 2500 A, pole-center distance = 350 mm) Operating voltage of the 1st shunt release 48 V DC Example for Order No.: Order codes: A 4 3 A H **Equipment Selection**Selection of secondary equipment | | e of the 3 rd rele
ease or c.tope | | Position:
Order No.: | 1 2
3 A | 3 4
H |
 | - 8
- I | | 11 1 |
 | 14 | 15 | 16 | - 7 | _ | Order | | |------------------|---|-----------------------|-------------------------|------------|----------|------|------------|--|------|------|-------------|-------------|-------------|------|--------------|-------|---| | Standard voltag | ges | Special voltages | | | | | | | | | See page 21 | See page 22 | See page 22 | | cz afipd aac | | | | Without or c.t | operated release | | | | | | | | | 0 | | | | | | | | | 24 V DC | | | | | | | | | | 1 | | | | | | | | | 48 V DC | | | | | | | | | | 2 | | | | | | | | | 60 V DC | | | | | | | | | | 3 | | | | | | | | | 110 V DC | | | | | | | | | | 4 | | | | | | | | | 220 V DC | | | | | | | | | | 5 | | | | | | | | | 100 V AC | 50/60 Hz ¹⁾ | | | | | | | | | 6 | | | | | | | | | 110 V AC | 50/60 Hz ¹⁾ | | | | | | | | | 7 | | | | | | | | | 230 V AC | 50/60 Hz ¹⁾ | | | | | | | | | 8 | | | | | | | | | | | 30 V DC | | | | | | | | 9 | Wi | ith o | rder | code | | N | | | | | 32 V DC | | | | | | | | 9 | Wi | ith o | rder | code | | N | • | | | | 120 V DC | | | | | | | | 9 | Wi | ith o | rder | code | | N | • | | | | 125 V DC | | | | | | | | 9 | Wi | ith o | rder | code | | N | | | | | 127 V DC | | | | | | | | 9 | | | | code | | N · | • | | | | 240 V DC | | | | | | | | 9 | | | | code | _ | | • | | | | 120 V AC | 50/60 Hz ¹⁾ | | | | | | | 9 | | | | code | | | • | | | | 125 V AC | 50/60 Hz ¹⁾ | | | | | | | 9 | | | | code | _ | N | | | | | 240 V AC | 50/60 Hz ¹⁾ | | | | | | | 9 | Wi | ith o | rder | code | | N | 1 | | Special version | | | | | | | | | | | | | | | | | | | • | | ndervoltage release o | | | | | | | | | | | | | | | | | | | C) or AN 1901-2 (for | | | | | | | | | | | | | | | | | | | voltage must be defi | | | | | | | | | | | | | | | | | | | be provided by the | customer | | | | | | | | | | | | | | | | or included in t | he scope of supply. | • | | | | | | | | | | | | | | | | | | | Energy store | | | | | | | | | | | | | | | | | | | Туре | In the scope of supply | | | | | | | | | | | | | | | | 60 V DC | | AN 1902- | no | | | | | | | 9 | Wi | ith o | rder | code | | N : | 2 | | 110 V DC | | AN 1902- | no | | | | | | | 9 | W | ith o | rder | code | | N : | 2 | | 220 V DC | | AN 1902- | no | | | | | | | 9 | Wi | ith o | rder | code | | N : | 2 | | 100/110/230 V | AC | AN 1901-2 | no | | | | | | | 9 | Wi | ith o | rder | code | | N : | 2 | | 60 V DC | | AN 1902- | yes | | | | | | | 9 | Wi | ith o | rder | code | | N : | | | 110 V DC | | AN 1902- | yes | | | | | | | 9 | W | ith o | rder | code | | N : | : | | 220 V DC | | AN 1902- | yes | | | | | | | 9 | Wi | ith o | rder | code | | N : | | | 100/110/230 V | AC | AN 1901-2 | yes | | | | | | | 9 | W | ith o | rder | code | | N : | | 1) The AC frequency 50 or 60 Hz is selected at the 16th position of the order number together with the language (see page 22) Configuration example Vacuum circuit-breaker $(U_{\rm r}$ = 36 kV, 50/60 Hz, $U_{\rm p}$ = 170 kV, $I_{\rm sc}$ = 40 kA, $I_{\rm r}$ = 2500 A, pole-center distance = 350 mm) 3rd release as c.t.-operated release > Example for Order No.: 3 A H 3 Order codes: A 4 | 14 th position
Operating vol | tage of the opera | ting mechanism | Position:
Order No.: | 1 | 2
A | 3
H | 4 | 5 | 6 | 7 – | 8 | 9 | 10 | 11 | 12 | -
- | 13 | 14 | 15 | 16 | - | * | Orde | _ | des | |--|------------------------|----------------------------|-------------------------|---|---------------|---------------|---|---|---|-----|---|---|----|----|----|--------|----|----|-------------|-------------|--------|-------------|------|---|-----| | Standard vo | oltages | Special voltages | | | | | | | | | | | | | | | | | See page 22 | See page 22 | | See page 23 | | | | | Manual ope | rating mechanism (har | nd crank included in the s | cope of supply) | | | | | | | | | | | | | | | Α | | | | | | | | | 24 V DC | | | | | | | | | | | | | | | | | | В | | | | | | | | | 48 V DC | | | | | | | | | | | | | | | | | | C | | | | | | | | | 60 V DC | | | | | | | | | | | | | | | | | | D | | | | | | | | | 110 V DC | | | | | | | | | | | | | | | | | | Ε | | | | | | | | | 220 V DC | | | | | | | | | | | | | | | | | | F | | | | | | | | | 100 V AC | 50/60 Hz ¹⁾ | | | | | | | | | | | | | | | | | Н | | | | | | | | | 110 V AC | 50/60 Hz ¹⁾ | | | | | | | | | | | | | | | | | J | | | | | | | | | 230 V AC | 50/60 Hz ¹⁾ | | | | | | | | | | | | | | | | | Κ | | | | | | | | | | | 30 V DC | | | | | | | | | | | | | | | | Z | Witl | n ord | ler co | de | Р | 1 | Α | | | | 32 V DC | | | | | | | | | | | | | | | | Z | Witl | n ord | ler co | de | Р | 1 | В | | | | 120 V DC | | | | | | | | | | | | | | | | Z | Witl | n ord | ler co | de | Р | 1 | C | | | | 125 V DC | | | | | | | | | | | | | | | | Z | Witl | n ord | ler co | de | Р | 1 | D | | | | 127 V DC | | | | | | | | | | | | | | | | Z | Witl | n ord | ler co | de | P | 1 | E | | | | 240 V DC | | | | | | | | | | | | | | | | Z | Witl | n ord | ler co | de | Р | 1 | F | | | | 120 V AC | 50/60 Hz ¹⁾ | | | | | | | | | | | | | | | Z | With | n ord | ler co | de | Р | 1 | K | | | | 125 V AC | 50/60 Hz ¹⁾ | | | | | | | | | | | | | | | Z | Witl | n ord | ler co | de | Р | 1 | L | | | | 240 V AC | 50/60 Hz ¹⁾ | | | | | | | | | | | | | | | Z | Witl | n ord | ler co | de | P | 1 | M | 1) The AC frequency 50 or 60 Hz is selected at the 16^{th} position of the order number together with the language (see page 22) Configuration example Vacuum circuit-breaker $(U_{\rm r}$ = 36 kV, 50/60 Hz, $U_{\rm p}$ = 170 kV, $I_{\rm sc}$ = 40 kA, $I_{\rm r}$ = 2500 A, pole-center distance = 350 mm) Operating voltage of the operating mechanism 230 V AC, 50 Hz 3 A H Example for Order No.: 3 A H 3 #### **Equipment Selection** Selection of secondary equipment Order codes: #### Retrofitting When releases/solenoids are retrofitted, the order numbers of the mounting parts must also be specified. For other additional equipment, the required mounting parts are included in the delivery. #### Spare parts When releases/solenoids are required as spare parts, the order number and the type of construction of the associated standard circuit-breaker must also be specified. #### Remark for orders The order numbers are applicable to standard circuitbreakers of current manufacture. When mounting parts or spare parts are being ordered for an existing standard circuit-breaker, always quote the type designation, serial number, design code and the year of manufacture of the circuit-breaker to be sure to get the correct delivery. #### Accessories for the plug connector Included in the scope of supply of the basic equipment for standard circuit-breakers: #### For 24-pole plug connector - Lower part of plug - Crimp sockets according to number of contacts - Upper part of plug with screwed contacts (no crimp sockets required) #### For 64-pole plug connector - Lower part of plug - Upper part of plug - Crimp sockets according to number of contacts Vacuum interrupters and other spare parts must only be replaced by instructed personnel. | Designation | Remarks | Operating voltage | Order No. | |---|--|-------------------------|-----------| | Hand crank | | | 3AX15 30- | | Lubricant | (for special application conditions) | | | | | 180 g Klüber-Isoflex Topas L32N | | 3AX11 33- | | | 1 kg Klüber-Isoflex Topas L32N | | 3AX11 33- | | | 1 kg Shell Tellus oil 32 (special oil) | | 3AX11 33- | | Operating solenoid | Used as closing solenoid or | 24 V DC | 3AY15 10- | | | 1st shunt release | 30/32 V DC | 3AY15 10- | | | | 48 V DC | 3AY15 10- | | | From 60 V DC with integrated varistor | 60 V DC | 3AY15 10- | | | From rated voltage 110 V with integrated rectifier | 110 V AC/DC | 3AY15 10- | | | and varistor for operation with AC or DC voltage | 125 V AC/DC | 3AY15 10- | | | | 220 V AC/DC | 3AY15 10- | | 2 nd shunt release | Without varistor, without rectifier | 24 V – 32 V DC | 3AX11 01- | | | Including varistor | 48 V – 60 V DC | 3AX11 01- | | | | 110 V – 127 V DC | 3AX11 01- | | | | 220 V – 240 V DC | 3AX11 01- | | | Including varistor and rectifier | 100 V – 125 V AC, 50 Hz | 3AX11 01- | | | | 230 V – 240 V AC, 50 Hz | 3AX11 01- | | | | 100 V – 125 V AC, 60 Hz | 3AX11 01- | | | | 230 V – 240 V AC, 60 Hz | 3AX11 01- | | Current-transformer
operated release | Rated normal current 0.5 A ,
including varistor and rectifier | | 3AX11 02- | | | Rated normal current 1 A, including varistor and rectifier | | 3AX11 02- | | | Tripping pulse \geq 0.1 Ws (10 Ω), for protection relay 7SJ41 | | 3AX11 04- | | | Tripping pulse \geq 0.1 Ws (20 Ω), for protection relay 7SJ45 and SEG WIP1 | | 3AX11 04- | | Designation | Remarks | Operating voltage | Order No. | |--|--|---|-----------| | | | | | | Undervoltage release | Without varistor, without rectifier | 24 V DC |
3AX11 03 | | | | 30/32 V DC | 3AX11 03- | | | | 48 V DC | 3AX11 03- | | | Including varistor | 60 V DC | 3AX11 03 | | | | 110 V DC | 3AX11 03- | | | | 120 V – 127 V DC | 3AX11 03 | | | | 220 V DC | 3AX11 03 | | | | 240 V DC | 3AX11 03 | | | Including varistor and rectifier | 100 V AC, 50 Hz | 3AX11 03 | | | | 110 V – 125 V AC, 50 Hz | 3AX11 03- | | | | 230 V AC, 50 Hz | 3AX11 03 | | | | 100 V AC, 60 Hz | 3AX11 03- | | | | 110 V – 125 V AC, 60 Hz | 3AX11 03 | | | | 230 V AC, 60 Hz | 3AX11 03 | | | In combination with energy store AN 1902-, | 60 V DC | 3AX11 03 | | | specified voltage corresponds to the input voltage | 110 V DC | 3AX11 03- | | | of the energy store | 220 V DC | 3AX11 03- | | | In combination with energy store AN 1901-2, | 100 V AC, 50/60 Hz | 3AX11 03- | | | specified voltage corresponds to the input voltage | 110 V AC, 50/60 Hz | 3AX11 03- | | | of the energy store | 230 V AC, 50/60 Hz | 3AX11 03- | | Mounting parts | For 2 nd shunt release or c.toperated release or undervolta | ge release | | | <u>. </u> | With 1 existing shunt release | For 3AH1 | 3AX17 11- | | | | For 3AH3 | 3AX17 11- | | | With 2 existing releases (shunt release, | For 3AH1 | 3AX17 11- | | | c.toperated release or undervoltage release) | For 3AH3 | 3AX17 11- | | Mechanical interlocking | , | For 3AH1 | 3AX17 20- | | <u> </u> | | For 3AH3 | 3AX15 20- | | Varistor module | With 2 varistors | | 3AX15 26- | | Energy store | For delayed tripping of the undervoltage release | | | | make Bender | Type AN 1901-2B, with dropout delay of approx. 1/1.8/2.5 s | Input voltage
100/110/230 V AC, 50/60 Hz,
output voltage 220 V DC | 3AX11 35 | | | Type AN 1902-1B, with dropout delay of approx. 0.5/0.9/1.5 s | Input and output voltage 220 V DC | 3AX11 35 | | | Type AN 1902-2B,
with dropout delay of approx. 0.5/0.9/1.5 s | Input and output voltage
110 V DC | 3AX11 35 | | | Type AN 1902-3B,
with dropout delay of approx. 0.5/0.9/1.5 s | Input and output voltage
60 V DC | 3AX11 35 | | Digital, c.toperated
overcurrent-time relay | As release | | | | make SEG | Type WIP1 | For overcurrent | 3AX11 35 | | | | For earth fault | 3AX11 35 | | Drive motor | | | | | For 3AH1 | | 24/30/32 V DC | 3AY17 11- | | | | 48 V DC | 3AY17 11- | | | From 60 V DC with integrated varistor | 60 V DC | 3AY17 11- | | | For AC, rectifier required | 100/110/126 V AC/DC | 3AY17 11- | | | | 220 V DC/230 V AC | 3AY17 11- | | For 3AH3 | | 24/30/32 V DC | 3AY15 11- | | | | 48 V DC | 3AY15 11- | | | From 60 V DC with integrated varistor | 60 V DC | 3AY15 11- | | | For AC, rectifier required | 100/110/126 V AC/DC | 3AY15 11- | | | , | 220 V DC/230 V AC | 3AY15 11- | | Rectifier module | For drive motor with AC operation | 100 V – 250 V AC | 3AX15 25 | | Designation | Remarks | | Operating voltage | Order No. | |--------------------------------|--|------------------|-------------------------|--------------| | Auxiliary contactor | Type 3TH20 22-7 | | | | | | For anti-pumping | | 24/30/32 V DC | SWB: 48683 | | | | | 48 V DC | SWB: 48687 | | | | | 60 V DC | SWB: 48684 | | | | | 110/120 V DC | SWB: 48685 | | | | | 125 V DC | SWB: 47730 | | | | | 220 V – 240 V DC | SWB: 48686 | | | | | 100 V – 125 V AC, 50 Hz | SWB: 48680 | | | | | 230 V – 240 V AC, 50 Hz | SWB: 49906 | | | | | 100 V – 125 V AC, 60 Hz | SWB: 48679 | | | | | 230 V – 240 V AC, 60 Hz | SWB: 49907 | | Position switch | Type 3SE4 (as spare part), without installat | tion accessories | | | | | Used for: | | Nos. | SWB: 46677 | | | – Electrical anti-pumping (-S3) | | 1 | | | | – Motor control (-S21, -S22) | | 2 | | | | – Closing spring charged (-S4) | | 1 | | | | – Circuit-breaker tripping signal (-S6, -S7) | | 2 | | | | – Electrical closing lock-out (-S5) | | 1 | | | Auxiliary switch (-S1) | 6 NO + 6 NC | | | 3SV92 73-2AA | | | 12 NO + 12 NC | | | 3SV92 74-2AA | | Wire bundle | With 10 wires for connection of auxiliary s | witch to | | | | | – 64-pole plug connector | | | 3AX11 34-4F | | | – 24-pole plug connector | | | 3AX11 34-2B | | | – 24-pole terminal strip | | | 3AX11 34-2C | | Accessories for plug connector | (for wire cross-section 1.5 mm ²) | | | | | | Crimp pins for lower part of plug | 24-pole | | 3AX11 34-3A | | | | 64-pole | | 3AX11 34-4B | | | Crimp sockets for upper part of plug | 64-pole | | 3AX11 34-4C | | | Crimping pliers | | | 3AX11 34-4D | | | Disassembly tool | | | 3AX11 34-4G | | | | | | | #### Spare vacuum interrupters | Remarks | Design code | Order No.
(1 no.)
Vacuum
interrupter
with adapter | |--|--|---| | | | | | 3AH1 056-■, 3AH1 116-■, 3AH1 166-■, 3AH1 215-■,
3AH1 216-■ | 1G | 3AY17 12-1F | | | | | | 3AH3 057-■, 3AH3 117-■, 3AH3 167-■, 3AH3 217-■ | 1J | 3AY17 15-1J | | 3AH3 078-2, 3AH3 078-6, 3AH3 078-7, 3AH3 128-2,
3AH3 128-6, 3AH3 128-7, 3AH3 178-2, 3AH3 178-6,
3AH3 178-7, 3AH3 228-2, 3AH3 228-6, 3AH3 228-7 | 1J | 3AY17 15-1J | | 3AH3 078-8, 3AH3 128-8, 3AH3 178-8, 3AH3 228-8 | 1J | 3AY17 15-4J | | 3AH3 266-6 | 2M | 3AY17 15-2M | | 3AH3 305- ■ | 1L | 3AY17 15-1L | | 3AH3 306- ■ | 1M | 3AY17 15-1M | | 3AH3 71■-■ | 3P | | | 3AH3 818-7 | 1N | 3AY17 15-1N | | 3AH3 818-8 | 1N | 3AY17 15-2N | | 3AH3 818-7 | 1F | 3AY17 15-1P | | 3AH3 818-8 | 1F | 3AY17 15-2P | | | | | | | 3AH1 056-■, 3AH1 116-■, 3AH1 166-■, 3AH1 215-■, 3AH1 216-■ 3AH3 057-■, 3AH3 117-■, 3AH3 167-■, 3AH3 217-■ 3AH3 078-2, 3AH3 078-6, 3AH3 078-7, 3AH3 128-2, 3AH3 128-6, 3AH3 128-7, 3AH3 178-2, 3AH3 178-7, 3AH3 228-7 3AH3 078-8, 3AH3 228-2, 3AH3 228-6, 3AH3 228-7 3AH3 078-8, 3AH3 128-8, 3AH3 178-8, 3AH3 228-8 3AH3 305-■ 3AH3 318-■ 3AH3 71■-■ 3AH3 818-7 3AH3 818-7 | 3AH1 056-■, 3AH1 116-■, 3AH1 166-■, 3AH1 215-■, 3AH1 216-■ 3AH3 057-■, 3AH3 117-■, 3AH3 167-■, 3AH3 217-■ 3AH3 078-2, 3AH3 078-6, 3AH3 078-7, 3AH3 128-2, 3AH3 128-6, 3AH3 128-7, 3AH3 178-2, 3AH3 178-6, 3AH3 178-7, 3AH3 228-2, 3AH3 228-8, 3AH3 228-7 3AH3 078-8, 3AH3 128-8, 3AH3 178-8, 3AH3 228-8 3AH3 305-■ 3AH3 305-■ 1L 3AH3 306-■ 3AH3 31-■ 3AH3 818-7 1N 3AH3 818-7 1N | As spare parts, the vacuum interrupters are always supplied with adapter. To select the correct spare interrupter, please specify the type designation, serial number, design code and year of manufacture of the circuit-breaker. All data is given on the rating plate. Vacuum interrupters and other spare parts must only be replaced by instructed personnel. #### Data on the rating plate For any query regarding spare parts, subsequent deliveries, etc. the following four details are necessary: - Type designation - Serial No. - Design code - Year of manufacture Contents Page Vacuum interrupter Post insulator and upper interrupter support | Technical Data | 29 | |--|----| | Electrical data, dimensions and weights: | | | Voltage level 7.2 kV | 30 | | Voltage level 12 kV | 30 | | Voltage level 15 kV | 32 | | Voltage level 17.5 kV | 32 | | Voltage level 24 kV | 34 | | Voltage level 36 kV | 34 | | Electrical data, dimensions and weights of high-current and generator circuit-breakers | 36 | | Circuit diagrams | 38 | | Operating times | 40 | | Short-circuit protection of motors | 40 | | Consumption data of releases | 40 | Contents | 7.2 kV 50/60 Hz | | | nce:
- CO | 00 | 0 | ation | aking current | uit breaking current | gcurrent | king current | e withstand voltage | ower-frequency | between connections
60694 at DC 100 A) | stance, | stance, | | | | awing | m No. (see page 31) | wing No. (see page 31) | |------------------------|----------------------|----------------------|--|-----------------------------|---------------------------|------------------------------|--------------------------------------|---|-------------------------------|---|---|--|--|--|---|--------------------------------------|--------------------------------------|---------|--|---------------------------------------|-------------------------------| | Order No. | Rated normal current | Pole-center distance | Rated operating sequence:
0 - 3 min - CO - 3 min - CO | 0 - 0.3 s - CO - 3 min - CO | O - 0.3 s - CO- 15 s - CO | Rated short-circuit duration | Rated short-circuit breaking current | DC component in % of the rated short-circuit breaking current | Asymmetrical breaking current | Rated short-circuit making current
(at 50/60 Hz) | Rated lightning impulse withstand voltage | Rated short-duration power-frequency withstand voltage | Voltage drop ΔU betwoeld according to IEC 6069 | Minimum creepage distance, interrupter | Minimum creepage
distance, phase-to-earth | Minimum clearance,
phase-to-phase | Minimum clearance,
phase-to-earth | Weights | Detailed dimension drawing
(can be ordered) | Operating cycle diagram No. (see page | Catalog dimension drawing No. | | | I_{r} | | | | | t _k | $I_{ m SC}$ | | | I_{ma} | U_{p} | $U_{\rm d}$ | | | | | | | | | | | | Α | mm | | | | S | kA | % | kA | kA | kV | kV | mV | mm | mm | mm | mm | kg | | | | | 3AH1 056-2 | 1250 | 210 | • | 0 | 0 | 3 | 40 | 36 | 44.9 | 100/
104 | 60 | 20 | 2.0 | 140 | 170 | 92 | 130 | 125 | 3M 425 00389 | 1 | 1 | | 3AH1 056-4 | 2000 | 210 | • | 0 | 0 | 3 | 40 | 36 | 44.9 | 100/
104 | 60 | 20 | 1.8 | 140 | 170 | 92 | 130 | 125 | 3M 425 00388 | 1 | 1 | | 3AH1 056-6 | 2500 | 210 | • | 0 | 0 | 3 | 40 | 36 | 44.9 | 100/
104 | 60 | 20 | 1.5 | 140 | 170 | 92 | 130 | 130 | 3M 425 00375 | 1 | 1 | | 3AH1 056-7 | 3150 | 210 | • | 0 | 0 | 3 | 40 | 36 | 44.9 | 100/
104 | 60 | 20 | 1.5 | 140 | 170 | 92 | 130 | 130 | 3M 425 00375 | 1 | 1 | | 3AH3 057-2 | 1250 | 210 | • | 0 | 0 | 3 | 50 | 36 | 56.1 | 125/
130 | 60 | 20 | 1.8 | 160 | 230 | 80 | 130 | 180 | 3M 325 00001 | 2 | 2 | | 3AH3 057-6 | 2500 | 210 | - | 0 | 0 | 3 | 50 | 36 | 56.1 | 125/
130 | 60 | 20 | 1.8 | 160 | 230 | 80 | 130 | 180 | 3M 325 00001 | 2 | 2 | | 3AH3 057-7 | 3150 | 210 | | 0 | 0 | 3 | 50 | 36 | 56.1 | 125/
130 | 60 | 20 | 1.8 | 160 | 230 | 80 | 130 | 180 | 3M 325 00001 | 2 | 2 | | 3AH3 077-8 | 4000 | 275 | • | 0 | 0 | 3 | 50 | 36 | 56.1 | 125/
130 | 60 | 20 | 1.4 | 160 | 170 | 71 | 130 | 308 | 3M 325 00004 | 2 | 4 | | 3AH3 078-2 | 1250 | 275 | • | 0 | 0 | 3 | 63 | 36 | 70.7 | 160/
164 | 60 | 20 | 1.8 | 160 | 170 | 71 | 130 | 196 | 3M 325 00003 | 3 | 3 | | 3AH3 078-6 | 2500 | 275 | | 0 | 0 | 3 | 63 | 36 | 70.7 | 160/
164 | 60 | 20 | 1.8 | 160 | 170 | 71 | 130 | 196 | 3M 325 00003 | 3 | 3 | | 3AH3 078-7 | 3150 | 275 | • | 0 | 0 | 3 | 63 | 36 | 70.7 | 160/
164 | 60 | 20 | 1.8 | 160 | 170 | 71 | 130 | 196 | 3M 325 00003 | 3 | 3 | | 3AH3 078-8 | 4000 | 275 | | 0 | 0 | 3 | 63 | 36 | 70.7 | 160/
164 | 60 | 20 | 1.4 | 160 | 170 | 71 | 130 | 308 | 3M 325 00004 | 3 | 4 | 12 kV | I_{r} | | | | | t _k | I_{SC} | | | I_{ma} | Up | U_{d} | | | | | | | | | | | 50/60 Hz | Α | mm | | | | S | kA | % | kA | kA | kV | kV | mV | mm | mm | mm | mm | kg | | | | | 3AH1 116-2 | | | • | 0 | 0 | 3 | 40 | 36 | 44.9 | 100/
104 | 75 | 28 | 2.0 | 140 | | 92 | 130 | 125 | 3M 425 00389 | 1 | 1 | | 3AH1 116-4 | 2000 | | | 0 | 0 | 3 | 40 | 36 | 44.9 | 100/
104 | 75 | 28 | 1.8 | 140 | | 92 | 130 | 125 | 3M 425 00388 | 1 | 1 | | 3AH1 116-6 | | | • | 0 | 0 | 3 | 40 | 36 | 44.9 | 100/
104 | 75 | 28 | 1.5 | | 170 | 92 | 130 | 130 | 3M 425 00375 | 1 | 1 | | 3AH1 116-7 | 3150 | | • | 0 | 0 | 3 | 40 | 36 | 44.9 | 100/
104 | 75 | 28 | 1.5 | | 170 | 92 | 130 | 130 | 3M 425 00375 | 1 | 1 | | 3AH3 117-2 | | | • | 0 | 0 | 3 | 50 | 36 | 56.1 | 125/
130 | 75 | 28 | 1.8 | 160 | | 80 | 130 | 180 | 3M 325 00001 | 2 | 2 | | 3AH3 117-6 | | 210 | | 0 | 0 | 3 | 50 | 36 | 56.1 | 125/
130 | 75 | 28 | 1.8 | 160 | 230 | 80 | 130 | 180 | 3M 325 00001 | 2 | 2 | | 3AH3 117-7 | 3150 | 210 | • | 0 | 0 | 3 | 50 | 36 | 56.1 | 125/
130 | 75 | 28 | 1.8 | 160 | 230 | 80 | 130 | 180 | 3M 325 00001 | 2 | 2 | | 3AH3 127-8 | 4000 | 275 | | 0 | 0 | 3 | 50 | 36 | 56.1 | 125/
130 | 75 | 28 | 1.4 | 160 | 170 | 71 | 130 | 308 | 3M 325 00004 | 2 | 4 | | 3AH3 128-2 | 1250 | 275 | • | 0 | 0 | 3 | 63 | 36 | 70.7 | 160/
164 | 75 | 28 | 1.8 | 160 | 170 | 71 | 130 | 196 | 3M 325 00003 | 3 | 3 | | 3AH3 128-6 | 2500 | 275 | • | 0 | 0 | 3 | 63 | 36 | 70.7 | 160/
164 | 75 | 28 | 1.8 | 160 | 170 | 71 | 130 | 196 | 3M 325 00003 | 3 | 3 | | 3AH3 128-7 | 3150 | 275 | • | 0 | 0 | 3 | 63 | 36 | 70.7 | 160/
164 | 75 | 28 | 1.8 | 160 | 170 | 71 | 130 | 196 | 3M 325 00003 | 3 | 3 | | 3AH3 128-8 | 4000 | 275 | • | 0 | 0 | 3 | 63 | 36 | 70.7 | 160/
164 | 75 | 28 | 1.4 | 160 | 170 | 71 | 130 | 308 | 3M 325 00004 | 3 | 4 | [■] Standard according to IEC 62271-100 O Rated operating sequence possible up to I_{SC} = 31.5 kA #### Operating cycle diagrams for 7.2 kV and 12 kV The permissible number of electrical operating cycles is shown as a function of the breaking current (r.m.s. value). All vacuum circuit-breakers fulfil the endurance classes E2, M2 and C2 according to IEC 62271-100. The curve shape beyond the parameters defined in IEC 62271-100 is based on average experience data. The number of operating cycles that can actually be reached can be different depending on the respective application. #### Dimension drawings for 7.2 kV and 12 kV Dimension drawing 4 | 15 KV 2000 10 10 10 10 10 10 | 33) | |---|------------|----------------------|----------------------|--|-----------------------------|--------------------|------------------------------|--------------------------------------|---|-------------------------------|---|---|--|--|---|--|--------------------------------------|--------------------------------------|---------|--|---|---| | 3 | 50/60 Hz | Rated normal current | Pole-center distance | Rated operating sequence:
0 - 3 min - CO - 3 min - CO | 0 - 0.3 s - CO - 3 min - CO | 0.3 s - CO- 15 s - | Rated short-circuit duration | Rated short-circuit breaking current | DC component in % of the rated short-circuit breaking current | Asymmetrical breaking current | Rated short-circuit making current
(at 50/60 Hz) | Rated lightning impulse withstand voltage | Rated short-duration power-frequency withstand voltage | Voltage drop ΔU between connections (according to IEC 60694 at DC 100 A) | Minimum creepage distance,
interrupter | Minimum creepage distance,
phase-to-earth | Minimum clearance,
phase-to-phase | Minimum clearance,
phase-to-earth | Weights | Detailed dimension drawing
(can be ordered) | Operating cycle diagram No. (see page 33) | Catalog dimension drawing No. (see page | | 3AH1 166-2 1250 210 | | I_{r} | | | | | t_{k} | $I_{ m SC}$ | | | I_{ma} | U_{p} | U_{d} | | | | | | | | | | | 3AH1 1664 | | Α | mm | | | | S | kA | % | kA | kA | kV | kV | mV | mm | mm | mm | mm | kg | | | | | 3AH1 166-6 2500 210 | 3AH1 166-2 | 1250 | 210 | • | 0 | 0 | 3 | 40 | 36 | 44.9 | | 95 | 36 | 2.0 | 140 | 170 | 90 | 130 | 130 | 3M 425 00387 | 4 | 5 | | 3AH1 166-7 3150 210 | 3AH1 166-4 | 2000 | 210 | • | 0 | 0 | 3 | 40 | 36 | 44.9 | | 95 | 36 | 1.8 | 140 | 170 | 90 | 130 | 130 | 3M 425 00380 | 4 | 5 | | 3AH3 167-2 1250 210 | 3AH1 166-6 | 2500 | 210 | • | 0 | 0 | 3 | 40 | 36 | 44.9 | | 95 | 36 | 1.5 | 140 | 170 | 90 | 130 | 135 | 3M 425 00378 | 4 | 5 | | 3AH3 167-6 2500 210 ■ ○ ○ ○ 3 50 36 56.1 130 95 36 1.8 160 230 110 130 184 3M 325 00002 5 6 6 3AH3 167-7 3150 210 ■ ○ ○ ○ 3 50 36 56.1 125/ 95 36 1.8 160 230 110 130 184 3M 325 00002 5 6 6 3AH3 177-8 4000 275 ■ ○ ○ ○ 3 63 65 6.1 125/ 95 36 1.8 160 230 110 130 184 3M 325 00002 5 6 6 3AH3 178-2 1250 275 ■ ○ ○ ○ 3 63 65 6.1 125/ 95 36 1.8 160 170 71 130 196 3M 325 00003 6 7 3AH3 178-6 2500 275 ■ ○ ○ ○ 3 63 36 70.7 160/ 95 36 1.8 160 170 71 130 196 3M 325 00003 6 7 3AH3 178-8 4000 275 ■ ○ ○ ○ 3 63 36 70.7 160/ 95 36 1.8 160 170 71 130 196 3M 325 00003 6 7 3AH3 178-8 4000 275 ■ ○ ○ ○ 3 63 36 70.7 160/ 95 36 1.8 160 170 71 130 196 3M 325 00003 6 7 3AH3 178-8 4000 275 ■ ○ ○ ○ 3 63 36 70.7 160/ 95 36 1.8 160 170 71 130 196 3M 325 00003 6 7 3AH3 178-8
4000 275 ■ ○ ○ ○ 3 63 36 70.7 160/ 95 36 1.8 160 170 71 130 196 3M 325 00003 6 7 3AH3 178-8 4000 275 ■ ○ ○ ○ 3 63 36 70.7 160/ 95 36 1.8 160 170 71 130 196 3M 325 00003 6 7 3AH3 178-8 4000 275 ■ ○ ○ ○ 3 63 36 70.7 160/ 95 36 1.8 160 170 71 130 308 3M 325 00004 6 8 8 3AH3 178-8 4000 275 ■ ○ ○ ○ 3 63 36 70.7 160/ 95 38 1.5 140 170 90 130 135 3M 425 00387 4 5 3AH1 216-2 1250 210 ■ ○ ○ ○ 3 40 36 44.9 100/ 95 38 1.5 140 170 90 130 135 3M 425 00387 4 5 3AH1 216-2 1250 210 ■ ○ ○ ○ 3 40 36 44.9 100/ 95 38 1.5 140 170 90 130 135 3M 425 00380 4 5 3AH1 216-7 3150 210 ■ ○ ○ ○ 3 40 36 44.9 100/ 95 38 1.5 140 170 90 130 135 3M 425 00380 4 5 3AH1 216-7 3150 210 ■ ○ ○ ○ 3 40 36 44.9 100/ 95 38 1.5 140 170 90 130 135 3M 425 00387 8 4 5 3AH3 217-6 2500 210 ■ ○ ○ ○ 3 50 36 56.1 125/ 95 38 1.5 140 170 90 130 135 3M 425 00380 8 6 3AH3 217-6 2500 210 ■ ○ ○ ○ 3 50 36 56.1 130 95 38 1.8 160 230 110 130 184 3M 325 00002 8 6 3AH3 217-6 2500 210 ■ ○ ○ ○ 3 50 36 56.1 130 95 38 1.8 160 230 110 130 184 3M 325 00002 8 6 3AH3 217-7 3150 210 ■ ○ ○ ○ 3 50 36 56.1 130 95 38 1.8 160 230 110 130 184 3M 325 00002 8 6 3AH3 217-7 3150 210 ■ ○ ○ ○ 3 63 63 67.7 160/ 95 38 1.8 160 170 145 130 198 3M 325 00000 9 7 3AH3 228-8 4000 275 ■ ○ ○ ○ 3 63 63 | 3AH1 166-7 | 3150 | 210 | • | 0 | 0 | 3 | 40 | 36 | 44.9 | 100/
104 | 95 | 36 | 1.5 | 140 | 170 | 90 | 130 | 135 | 3M 425 00378 | 4 | 5 | | 3AH3 177-8 3150 210 ■ O O 3 50 36 56.1 130 125/ 95 36 1.8 160 230 110 130 184 3M 32500002 5 6 6 3AH3 177-8 4000 275 ■ O O 3 63 63 66.1 125/ 95 36 1.8 160 230 110 130 184 3M 32500003 6 7 3AH3 178-8 1250 275 ■ O O 3 63 63 67 0.7 160/ 95 36 1.8 160 170 71 130 196 3M 32500003 6 7 3AH3 178-8 3150 275 ■ O O 3 63 63 67 0.7 160/ 95 36 1.8 160 170 71 130 196 3M 32500003 6 7 3AH3 178-7 3150 275 ■ O O 3 63 63 67 0.7 160/ 95 36 1.8 160 170 71 130 196 3M 32500003 6 7 3AH3 178-8 4000 275 ■ O O 3 63 63 67 0.7 160/ 164 95 36 1.8 160 170 71 130 196 3M 32500003 6 7 3AH3 178-8 4000 275 ■ O O 3 63 63 67 0.7 160/ 164 95 36 1.8 160 170 71 130 196 3M 32500003 6 7 3AH3 178-8 4000 275 ■ O O 3 63 36 70.7 160/ 164 95 36 1.4 160 170 71 130 308 3M 32500004 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 3AH3 167-2 | 1250 | 210 | • | 0 | 0 | 3 | 50 | 36 | 56.1 | 125/
130 | 95 | 36 | 1.8 | 160 | 230 | 110 | 130 | 184 | 3M 325 00002 | 5 | 6 | | 3AH3 177-8 4000 275 ■ O O 3 50 36 56.1 130 | 3AH3 167-6 | 2500 | 210 | • | 0 | 0 | 3 | 50 | 36 | 56.1 | 125/
130 | 95 | 36 | 1.8 | 160 | 230 | 110 | 130 | 184 | 3M 325 00002 | 5 | 6 | | 3AH3 178-2 1250 275 ■ 0 0 3 63 36 70.7 160/ 95 36 1.8 160 170 71 130 196 3M 325 00003 6 7 3AH3 178-6 2500 275 ■ 0 0 0 3 63 36 70.7 160/ 95 36 1.8 160 170 71 130 196 3M 325 00003 6 7 3AH3 178-8 4000 275 ■ 0 0 0 3 63 36 70.7 160/ 95 36 1.8 160 170 71 130 196 3M 325 00003 6 7 3AH3 178-8 4000 275 ■ 0 0 0 3 63 36 70.7 160/ 95 36 1.8 160 170 71 130 196 3M 325 00003 6 7 3AH3 178-8 4000 275 ■ 0 0 0 3 63 36 70.7 160/ 95 36 1.8 160 170 71 130 196 3M 325 00003 6 7 3AH3 178-8 4000 275 ■ 0 0 0 3 63 36 70.7 160/ 95 36 1.4 160 170 71 130 308 3M 325 00004 6 8 17.5 kV | 3AH3 167-7 | 3150 | 210 | • | 0 | 0 | 3 | 50 | 36 | 56.1 | | 95 | 36 | 1.8 | 160 | 230 | 110 | 130 | 184 | 3M 325 00002 | 5 | 6 | | 3AH3 178-6 2500 275 ■ O O 3 63 36 70.7 164 95 36 1.8 160 170 71 130 196 3M 325 00003 6 7 3 AH3 178-7 3150 275 ■ O O 3 63 36 70.7 164 95 36 1.8 160 170 71 130 196 3M 325 00003 6 7 3 AH3 178-8 4000 275 ■ O O 3 63 36 70.7 1604 95 36 1.8 160 170 71 130 196 3M 325 00003 6 7 3 AH3 178-8 4000 275 ■ O O 3 63 36 70.7 1604 95 36 1.4 160 170 71 130 308 3M 325 00004 6 8 3 AH3 215-7 3150 210 ■ □ □ 3 31.5 36 35.4 80/104 95 38 1.5 140 170 90 130 135 3M 425 00378 7 5 3 AH1 216-2 1250 210 ■ O O 3 40 36 44.9 100/104 95 38 1.8 140 170 90 130 130 3M 425 00378 4 5 3 AH1 216-6 2500 210 ■ O O 3 40 36 44.9 100/104 95 38 1.5 140 170 90 130 135 3M 425 00378 4 5 3 AH1 216-7 3150 210 ■ O O 3 40 36 44.9 100/104 95 38 1.5 140 170 90 130 135 3M 425 00378 4 5 3 AH1 216-7 3150 210 ■ O O 3 40 36 44.9 100/104 95 38 1.5 140 170 90 130 135 3M 425 00378 4 5 3 AH1 216-7 3150 210 ■ O O 3 40 36 44.9 100/104 95 38 1.5 140 170 90 130 135 3M 425 00378 4 5 3 AH1 216-7 3150 210 ■ O O 3 40 36 44.9 100/104 95 38 1.5 140 170 90 130 135 3M 425 00378 4 5 3 AH1 216-7 3150 210 ■ O O 3 40 36 44.9 100/104 95 38 1.5 140 170 90 130 135 3M 425 00378 4 5 3 AH1 216-7 3150 210 ■ O O 3 50 36 56.1 125/104 95 38 1.8 160 230 110 130 184 3M 325 00002 8 6 6 3 AH3 217-7 3150 210 ■ O O 3 50 36 56.1 125/130 95 38 1.8 160 230 110 130 184 3M 325 00002 8 6 6 3 AH3 217-7 3150 210 ■ O O 3 50 36 56.1 125/130 95 38 1.8 160 230 110 130 184 3M 325 00002 8 6 6 3 AH3 217-7 3150 210 ■ O O 3 50 36 56.1 125/130 95 38 1.8 160 230 110 130 184 3M 325 00002 8 6 6 3 AH3 217-7 3150 210 ■ O O 3 63 63 65.1 125/130 95 38 1.8 160 170 145 130 198 3M 325 00002 8 6 6 3 AH3 227-8 4000 275 ■ O O 3 63 36 70.7 160/138 95 38 1.8 160 170 145 130 198 3M 325 00005 9 7 3 AH3 228-8 4000 275 ■ O O 3 63 63 70.7 160/163/8 95 38 1.8 160 170 145 130 198 3M 325 00005 9 7 3 AH3 228-6 2500 275 ■ O O 3 63 63 70.7 160/163/8 95 38 1.8 160 170 145 130 198 3M 325 00005 9 7 3 AH3 228-6 2500 275 ■ O O 3 63 63 70.7 160/163/8 95 38 1.8 160 170 145 130 198 3M 325 00005 9 | 3AH3 177-8 | 4000 | 275 | • | 0 | 0 | 3 | 50 | 36 | 56.1 | | 95 | 36 | 1.4 | 160 | 170 | 135 | 130 | 310 | 3M 325 00006 | 5 | 8 | | 3AH3 178-8 3150 275 ■ 0 0 3 63 36 70.7 160/ 95 36 1.8 160 170 71 130 196 3M 325 00003 6 7 3AH3 178-8 4000 275 ■ 0 0 0 3 63 36 70.7 160/ 95 36 1.4 160 170 71 130 308 3M 325 00004 6 8 17.5 kV | 3AH3 178-2 | 1250 | 275 | • | 0 | 0 | 3 | 63 | 36 | 70.7 | 160/
164 | 95 | 36 | 1.8 | 160 | 170 | 71 | 130 | 196 | 3M 325 00003 | 6 | 7 | | 3AH3 178-8 4000 275 ■ O O 3 63 36 70.7 1644 95 36 1.4 160 170 71 130 308 3M325 00004 6 8 17.5 kV A mm | 3AH3 178-6 | 2500 | 275 | • | 0 | 0 | 3 | 63 | 36 | 70.7 | | 95 | 36 | 1.8 | 160 | 170 | 71 | 130 | 196 | 3M 325 00003 | 6 | 7 | | 17.5 kV 50/60 Hz Ir A mm Ir k Isc | 3AH3 178-7 | 3150 | 275 | ٠ | 0 | 0 | 3 | 63 | 36 | 70.7 | | 95 | 36 | 1.8 | 160 | 170 | 71 | 130 | 196 | 3M 325 00003 | 6 | 7 | | 3AH1 216-6 250 210 ■ □ | 3AH3 178-8 | 4000 | 275 | • | 0 | 0 | 3 | 63 | 36 | 70.7 | | 95 | 36 | 1.4 | 160 | 170 | 71 | 130 | 308 | 3M 325 00004 | 6 | 8 | | 3AH1 216-2 1250 210 | | | mm | | | | | | % | kA | | | | mV | mm | mm | mm | mm | kg | | | | | 3AH1 216-4 2000 210 ■ ○ ○ 3 40 36 44.9 100/ 104 95 38 1.8 140 170 90 130 135 3M 425 00380 4 5 3AH1 216-6 2500 210 ■ ○ ○ 3 40 36 44.9 100/ 104 95 38 1.5 140 170 90 130 135 3M 425 00378 4 5 3AH1 216-7 3150 210 ■ ○ ○ 3 40 36 44.9 100/ 104 95 38 1.5 140 170 90 130 135 3M 425 00378 4 5 3AH3 217-2 1250 210 ■ ○ ○ 3 50 36 56.1 125/ 130 95 38 1.8 160 230 110 130 184 3M 325 00002 8 6 3AH3 217-7 3150 210 ■ ○ ○ 3 50 36 56.1 125/ 130 95 38 1.8 160 230 110 130 184 3M 325 00002 8 6 3AH3 217-7 3150 210 ■ ○ ○ 3 50 36 56.1 125/ 130 95 38 1.8 160 230 110 130 184 3M 325 00002 8 6 3AH3 227-8 4000 275 ■ ○ ○ 3 63 36 70.7 160/ 163.8 95 38 1.8 160 170 145 130 198 3M 325 00005 9 7 3AH3 228-6 2500 275 ■ ○ ○ 3 63 36 70.7 160/ 163.8 95 38 1.8 160 170 145 130 198 3M 325 00005 9 7 | 3AH1 215-7 | 3150 | 210 | • | | | 3 | 31.5 | 36 | 35.4 | | 95 | 38 | 1.5 | 140 | 170 | 90 | 130 | 135 | 3M 425 00378 | 7 | 5 | | 3AH1 216-6 2500 210 ■ ○ ○ 3 40 36 44.9 100/104 95 38 1.5 140 170 90 130 135 3M 425 00378 4 5 3AH1 216-7 3150 210 ■ ○ ○ 3 40 36 44.9 100/104 95 38 1.5 140 170 90 130 135 3M 425 00378 4 5 3AH3 217-2 1250 210 ■ ○ ○ 3 50 36 56.1 125/130 95 38 1.8 160 230 110 130 184 3M 325 00002 8 6 3AH3 217-7 3150 210 ■ ○ ○ 3 50 36 56.1 125/130 95 38 1.8 160 230 110 130 184 3M 325 00002 8 6 3AH3 217-7 3150 210 ■ ○ ○ 3 50 36 56.1 125/130 95 38 1.8 160 230 110 130 184 3M 325 00002 8 6 3AH3 217-7 3150 210 ■ ○ ○ 3 50 36 56.1 125/130 95 38 1.8 160 230 110 130 184 3M 325 00002 8 6 3AH3 227-8 4000 275 ■ ○ ○ 3 50 36 56.1 125/130 95 38 1.4 160 170 135 130 310 3M 325 00006 8 8 3AH3 228-2 1250 275 ■ ○ ○ 3 63 36 70.7 160/163.8 95 38 1.8 160 170 145 130 198 3M 325 00005 9 7 3AH3 228-6 2500 275 ■ ○ ○ 3 63 36 70.7 160/163.8 95 38 1.8 160 170 145 130 198 3M 325 00005 9 7 | 3AH1 216-2 | 1250 | 210 | • | 0 | 0 | 3 | 40 | 36 | 44.9 | | 95 | 38 | 2.0 | 140 | 170 | 90 | 130 | 130 | 3M 425 00387 | 4 | 5 | | 3AH1 216-7 3150 210 0 0 3 40 36 44.9 100/104 95 38 1.5 140 170 90 130 135 3M 425 00378 4 5 3AH3 217-2 1250 210 0 0 3 50 36 56.1 125/130 95 38 1.8 160 230 110 130 184 3M 325 00002 8 6 3AH3 217-7 3150 210 0 0 3 50 36 56.1 125/130 95 38 1.8 160 230 110 130 184 3M 325 00002 8 6 3AH3 217-7 3150 210 0 0 3 50 36 56.1 125/130 95 38 1.8 160 230 110 130 184 3M 325 00002 8 6 3AH3 227-8 4000 275 0 0 3 50 36 56.1 125/130 95 38 1.8 160 230 110 130 184 3M 325 00002 8 8 3AH3 228-2 1250 275 0 0 0 3 63 36 70.7 160/163.8 95 38 1.8 160 170 145 130 198 3M 325 00005 9 7 3AH3 228-6 2500 275 0 0 0 3 63 36 70.7 160/163.8 95 38 1.8 160 170 145 130 198 3M 325 00005 9 7 | 3AH1 216-4 | 2000 | 210 | | 0 | 0 | 3 | 40 | 36 | 44.9 | 100/
104 | 95 | 38 | 1.8 | 140 | 170 | 90 | 130 | 130 | 3M 425 00380 | 4 | 5 | | 3AH3 217-6 2500 210 ■ O O 3 50 36 56.1 125/130 95 38 1.8 160 230 110 130 184 3M 325 00002 8 6 3AH3 217-7 3150 210 ■ O O 3 50 36 56.1 125/130 95 38 1.8 160 230 110 130 184 3M 325 00002 8 6 3AH3 227-8 4000 275 ■ O O 3 63 36 70.7 160/163.8 95 38 1.8 160 170 145 130 198 3M 325 00005 9 7 3AH3 228-6 2500 275 ■ O O 3 63 36 70.7 160/163.8 95 38 1.8 160 170 145 130 198 3M 325 00005 9 7 | 3AH1 216-6 | 2500 | 210 | • | 0 | 0 | 3 | 40 | 36 | 44.9 | | 95 | 38 | 1.5 | 140 | 170 | 90 | 130 | 135 | 3M 425 00378 | 4 | 5 | | 3AH3 217-6 2500 210 ■ O O 3 50 36 56.1 125/130 95 38 1.8 160 230 110 130 184 3M 325 00002 8 6 3AH3 217-7 3150 210 ■ O O 3 50 36 56.1 125/130 95 38 1.8 160 230 110 130 184 3M 325 00002 8 6 3AH3 227-8 4000 275 ■ O O 3 50 36 56.1 125/130 95 38 1.4 160 170 135 130 310 3M 325 00006 8 8 3AH3 228-2 1250 275 ■ O O 3 63 36 70.7 160/163.8 95 38
1.8 160 170 145 130 198 3M 325 00005 9 7 3AH3 228-6 2500 275 ■ O O 3 63 36 70.7 160/163.8 95 38 1.8 160 170 145 130 198 3M 325 00005 9 7 | 3AH1 216-7 | 3150 | 210 | • | 0 | 0 | 3 | 40 | 36 | 44.9 | 100/
104 | 95 | 38 | 1.5 | 140 | 170 | 90 | 130 | 135 | 3M 425 00378 | 4 | 5 | | 3AH3 217-7 3150 210 ■ O O 3 50 36 56.1 125/130 95 38 1.8 160 230 110 130 184 3M 325 00002 8 6 3AH3 227-8 4000 275 ■ O O 3 50 36 56.1 125/130 95 38 1.4 160 170 135 130 310 3M 325 00006 8 8 3AH3 228-2 1250 275 ■ O O 3 63 36 70.7 160/163.8 95 38 1.8 160 170 145 130 198 3M 325 00005 9 7 3AH3 228-6 2500 275 ■ O O 3 63 36 70.7 160/163.8 95 38 1.8 160 170 145 130 198 3M 325 00005 9 7 | 3AH3 217-2 | 1250 | 210 | • | 0 | 0 | 3 | 50 | 36 | 56.1 | | 95 | 38 | 1.8 | 160 | 230 | 110 | 130 | 184 | 3M 325 00002 | 8 | 6 | | 3AH3 228-6 2500 275 ■ O O 3 63 36 70.7 160/163.8 95 38 1.8 160 170 145 130 198 3M 325 00005 9 7 | 3AH3 217-6 | 2500 | 210 | • | 0 | 0 | 3 | 50 | 36 | 56.1 | | 95 | 38 | 1.8 | 160 | 230 | 110 | 130 | 184 | 3M 325 00002 | 8 | 6 | | 3AH3 228-2 1250 275 ■ O O 3 63 36 70.7 160/163.8 95 38 1.8 160 170 145 130 198 3M 325 00005 9 7 3AH3 228-6 2500 275 ■ O O 3 63 36 70.7 160/163.8 95 38 1.8 160 170 145 130 198 3M 325 00005 9 7 | 3AH3 217-7 | 3150 | 210 | | 0 | 0 | 3 | 50 | 36 | 56.1 | 125/
130 | 95 | 38 | 1.8 | 160 | 230 | 110 | 130 | 184 | 3M 325 00002 | 8 | 6 | | 3AH3 228-6 2500 275 ■ O O 3 63 36 70.7 163.8 95 38 1.8 160 170 145 130 198 3M 325 00005 9 7 | 3AH3 227-8 | 4000 | 275 | • | 0 | 0 | 3 | 50 | 36 | 56.1 | | 95 | 38 | 1.4 | 160 | 170 | 135 | 130 | 310 | 3M 325 00006 | 8 | 8 | | | 3AH3 228-2 | 1250 | 275 | • | 0 | 0 | 3 | 63 | 36 | 70.7 | 160/
163.8 | 95 | 38 | 1.8 | 160 | 170 | 145 | 130 | 198 | 3M 325 00005 | 9 | 7 | | 3AH3 228-7 3150 275 ■ O O 3 63 36 70.7 160/ 163.8 95 38 1.8 160 170 145 130 198 3M 325 00005 9 7 | 3AH3 228-6 | 2500 | 275 | • | 0 | 0 | 3 | 63 | 36 | 70.7 | | 95 | 38 | 1.8 | 160 | 170 | 145 | 130 | 198 | 3M 325 00005 | 9 | 7 | | | 3AH3 228-7 | 3150 | 275 | • | 0 | 0 | 3 | 63 | 36 | 70.7 | 160/
163.8 | 95 | 38 | 1.8 | 160 | 170 | 145 | 130 | 198 | 3M 325 00005 | 9 | 7 | | 3AH3 228-8 4000 275 ■ ○ ○ 3 63 36 70.7 160/163.8 95 38 1.4 160 170 135 130 310 3M 325 00006 9 8 | 3AH3 228-8 | 4000 | 275 | • | 0 | 0 | 3 | 63 | 36 | 70.7 | 160/
163.8 | 95 | 38 | 1.4 | 160 | 170 | 135 | 130 | 310 | 3M 325 00006 | 9 | 8 | [■] Standard according to IEC 62271-100 \square Possible O Rated operating sequence possible up to $I_{SC} = 31.5 \text{ kA}$ ## Operating cycle diagrams for 15 kV and 17.5 kV The permissible number of electrical operating cycles is shown as a function of the breaking current (r.m.s. value). All vacuum circuit-breakers fulfil the endurance classes E2, M2 and C2 according to IEC 62271-100. The curve shape beyond the parameters defined in IEC 62271-100 is based on average experience data. The number of operating cycles that can actually be reached can be different depending on the respective application. #### Dimension drawings for 15 kV and 17.5 kV Dimension drawing 8 | 24 kV 50/60 Hz | ent | Се | quence:
nin - CO | 3 min - CO | 9. | duration | oreaking current | DC component in % of the rated short-circuit breaking current | king current | making current | Rated lightning impulse withstand voltage | Rated short-duration power-frequency withstand voltage | Voltage drop ∆U between connections
(according to IEC 60694 at DC 100 A) | e distance, | e distance, | 'n | ď. | | drawing | gram No. (see page 35) | Catalog dimension drawing No. (see page 35) | |-----------------------|----------------------|----------------------|--|----------------|------------------------|------------------------------|--------------------------------------|---|-------------------------------|---|---|--|---|--|---|--------------------------------------|--------------------------------------|---------|--|-----------------------------|---| | Order No. | Rated normal current | Pole-center distance | Rated operating sequence:
0 - 3 min - CO - 3 min - CO | 0-0.3 s-CO-3 m | 0 - 0.3 s - CO- 15 s - | Rated short-circuit duration | Rated short-circuit breaking current | DC component in 9 of the rated short-c | Asymmetrical breaking current | Rated short-circuit making current
(at 50/60 Hz) | Rated lightning im | Rated short-duration withstand voltage | Voltage drop ∆U be (according to IEC 6 | Minimum creepage distance, interrupter | Minimum creepage distance, phase-to-earth | Minimum clearance,
phase-to-phase | Minimum clearance,
phase-to-earth | Weights | Detailed dimension drawing
(can be ordered) | Operating cycle diagram No. | Catalog dimension | | | I_{r} | | | | | t _k | $I_{ m sc}$ | | | I_{ma} | U_{p} | $U_{\rm d}$ | | | | | | | | | | | | Α | mm | | | | S | kA | % | kA | kA | kV | kV | mV | mm | mm | mm | mm | kg | | | | | 3AH3 266-6 | 2500 | 275 | • | 0 | 0 | 3 | 40 | 36 | 44.9 | 100/
104 | 125 | 50 | 2.0 | 360 | 226 | 245 | 173 | 168 | 3M 325 00007 | 10 | 9 | 36 kV | I_{r} | | | | | t _k | I_{SC} | | | $I_{\sf ma}$ | U_{p} | U_{d} | | | | | | | | | | | 50/60 Hz | Α | mm | | | | S | kA | % | kA | kA | kV | kV | mV | mm | mm | mm | mm | kg | | | | | 36 kV | I_{r} | | | | | t _k | $I_{ m SC}$ | | | I_{ma} | U_{p} | U_{d} | | | | | | | | | | |------------|---------|-----|---|---|---|----------------|-------------|----|------|-------------|---------|---------|-----|-----|-----|-----|-----|-----|--------------|----|----| | 50/60 Hz | Α | mm | | | | S | kA | % | kA | kA | kV | kV | mV | mm | mm | mm | mm | kg | | | | | 3AH3 305-2 | 1250 | 350 | - | | | 3 | 31.5 | 36 | 35.4 | 80/
82 | 170 | 70 | 2.3 | 360 | 330 | 314 | 260 | 170 | 3M 325 00008 | 11 | 10 | | 3AH3 305-4 | 2000 | 350 | - | | | 3 | 31.5 | 36 | 35.4 | 80/
82 | 170 | 70 | 2.3 | 360 | 330 | 314 | 260 | 175 | 3M 325 00008 | 11 | 10 | | 3AH3 305-6 | 2500 | 350 | - | | | 3 | 31.5 | 36 | 35.4 | 80/
82 | 170 | 70 | 2.3 | 360 | 330 | 314 | 260 | 175 | 3M 325 00009 | 11 | 11 | | 3AH3 306-6 | 2500 | 350 | • | 0 | 0 | 3 | 40 | 36 | 44.9 | 100/
104 | 170 | 70 | 2.0 | 360 | 330 | 314 | 260 | 175 | 3M 325 00009 | 11 | 11 | [■] Standard according to IEC 62271-100 \square Possible O Rated operating sequence possible up to I_{SC} = 31.5 kA ### Operating cycle diagram and dimension drawings for 24 and 36 kV The permissible number of electrical operating cycles is shown as a function of the breaking current (r.m.s. value). All vacuum circuit-breakers fulfil the endurance classes E2, M2 and C2 according to IEC 62271-100. The curve shape beyond the parameters defined in IEC 62271-100 is based on average experience data. The number of operating cycles that can actually be reached can be different depending on the respective application. Dimension drawing 11 | 17.5 kV
50/60 Hz | الله عند الله الله الله الله الله الله الله الل | B Pole-center distance | Rated operating sequence:
O - 3 min - CO - 3 min - CO | O - 30 min - CO | س ج۴ Rated short-circuit duration | ろ パ Rated short-circuit breaking current | DC component in % of the rated short-circuit breaking current | Asymmetrical breaking current | 장 글 Rated short-circuit making current
(at 50/60 Hz) | S and Rated lightning impulse withstand voltage | Rated short-duration power-frequency withstand voltage | Voltage drop ∆U between connections (according to IEC 60694 at DC 100 A) | Minimum creepage distance, | Minimum creepage distance, phase-to-earth | Minimum clearance, phase-to-phase | Minimum clearance, phase-to-earth | 중 Weights | Detailed dimension drawing
(can be ordered) | Operating cycle diagram No. (see page 37) | Catalog dimension drawing No. (see page 37) | |---------------------|---|------------------------|--|-----------------|-----------------------------------|--|---|-------------------------------|---|---|--|--|----------------------------|--|------------------------------------|------------------------------------|-----------|--|---|---| | 3AH3 712-4 | 5000 | | • | 0 | 3 | 50 | 75 | 73 | 137 | 110 | 50 | 1.4 | 160 | 230 | 230 | 230 | 470 | 3M 325 00587 | | 14 | | 3AH3 712-5 | 6300 | 300 | | 0 | 3 | 50 | 75 | 73 | 137 | 110 | 50 | 1.4 | 160 | 230 | 230 | 230 | 500 | 3M 325 00587 | | 14 | | 3AH3 713-4 | 5000 | 300 | • | 0 | 3 | 63 | 65 | 86 | 173 | 110 | 50 | 1.4 | 160 | 230 | 230 | 230 | 470 | 3M 325 00588 | | 14 | | 3AH3 713-5 | 6300 | 300 | | 0 | 3 | 63 | 65 | 86 | 173 | 110 | 50 | 1.4 | 160 | 230 | 230 | 230 | 500 | 3M 325 00588 | | 14 | | 3AH3 714-4 | 5000 | 300 | • | 0 | 3 | 72 | 65 | 96 | 198 | 110 | 50 | 1.4 | 160 | 230 | 230 | 230 | 470 | 3M 325 00589 | | 14 | | 3AH3 714-5 | 6300 | 300 | • | 0 | 3 | 72 | 65 | 96 | 198 | 110 | 50 | 1.4 | 160 | 230 | 230 | 230 | 500 | 3M 325 00589 | | 14 | | 3AH3 817-7 | 3150 | 275 | • |
0 | 3 | 50 | 75 | 73 | 137 | 110 | 50 | 1.4 | 160 | 170 | 145 | 130 | 230 | 3M 325 00592 | | 12 | | 3AH3 817-8 | 4000 | 275 | • | 0 | 3 | 50 | 75 | 73 | 137 | 110 | 50 | 1.4 | 160 | 170 | 135 | 130 | 320 | 3M 325 00593 | | 13 | | 3AH3 818-7 | 3150 | 275 | • | 0 | 3 | 63 | 65 | 86 | 173 | 110 | 50 | 1.4 | 160 | 170 | 145 | 130 | 230 | 3M 325 00019 | | 15 | | 3AH3 818-8 | 4000 | | • | 0 | 3 | 63 | 65 | 86 | 173 | 110 | 50 | 1.4 | 160 | 170 | 135 | 130 | 320 | 3M 325 00030 | | 13 | | 3AH3 819-7 | 3150 | | • | 0 | 3 | 72 | 65 | 96 | 198 | 110 | 50 | 1.4 | 160 | 170 | 145 | 130 | 250 | 3M 325 00019 | | 15 | | 3AH3 819-8 | 4000 | 275 | • | 0 | 3 | 72 | 65 | 96 | 198 | 110 | 50 | 1.4 | 160 | 170 | 135 | 130 | 320 | 3M 325 00030 | | 13 | [■] Standard according to IEC 62271-100 O According to IEEE Std C37.013 #### Number of operating cycles The maximum permissible number of mechanical operating cycles is 10,000. Short-circuit breaking operations have been tested and proved under various conditions according to IEEE C37.013. As regards the electrical service life, values ranging beyond this depend on the specific case of application. #### Dimension drawings for high-current and generator circuit-breakers 17.5 kV Dimension drawing 12 #### Dimension drawing 13 Dimension drawing 14 #### **Basic equipment** Manual closing – manual opening with auxiliary switch 6 NO + 6 NC Contacts available for customer with basic circuit-breaker equipment and auxiliary switch 6 NO + 6 NC #### Additional equipment: Motor operating mechanism and auxiliary switch Motor operating mechanism with manual electrical closing #### Additional equipment: Releases (for combination possibilities see page 16) The circuit diagrams shown here are examples from the manifold possibilities of circuit-breaker wiring #### Basic equipment (continuation) Motor operating mechanism with manual mechanical closing #### Additional equipment: Motor operating mechanism and auxiliary switch (continuation) Motor operating mechanism Contacts available for customer with basic circuit-breaker equipment Auxiliary switch -S1 (12 NO + 12 NC) instead of auxiliary switch 6 NO + 6 NC ### Legend | HA | Manual opening | |------|---------------------------| | HE | Manual closing | | K1 | Contactor (anti-pumping) | | M1 | Motor operating mechanism | | Р | Energy store | | R1 | Resistance | | S1 | Auxiliary switch | | S10, | Anti-pumping for | | S11 | manual closing | | | | | | | | S14, | Anti-pumping | |------|----------------------------| | S15 | | | S21, | Position switches | | S22 | (to de-energize the motor | | | operating mechanism | | | after charging) | | S3 | Position switch | | | (opens when closing spring | | | | is charged) | S41, | Position switches | |------|---------------------------------| | S42 | (to indicate the charging state | | S6 | Circuit-breaker tripping signal | | S7 | Cutout switch for circuit- | | | breaker tripping signal | | X0 | Lower part of plug/ | | | terminal strip | | | | | Y1 | 1st shunt release | |----|-------------------------------| | Y2 | 2 nd shunt release | | Y4 | Current-transformer | | | operated release | | Y6 | Low-energy current- | | | transformer operated release | | Y7 | Undervoltage release | | Y9 | Closing solenoid | | | | | | | The circuit diagrams shown here are examples from the manifold possibilities of circuit-breaker wiring #### **Operating times** | Operating times at rated voltage of the secondary circuit | Equipment of circuit-breaker | Operating time of circuit-breaker | | |---|---|-----------------------------------|---------| | | | 3AH1 | 3AH3 | | Closing time | - | < 75 ms | < 80 ms | | Opening time | 1st shunt release | < 65 ms | < 65 ms | | | 2 nd and 3 rd release | < 50 ms | < 50 ms | | Arcing time | - | < 15 ms | < 15 ms | | Opening time | 1st shunt release | < 80 ms | < 80 ms | | | 2 nd and 3 rd release | < 65 ms | < 60 ms | | Dead time | - | 300 ms | 300 ms | | CLOSE/OPEN contact time | 1st shunt release | < 80 ms | < 90 ms | | | 2 nd and 3 rd release | < 65 ms | < 70 ms | | Minimum command duration | Closing solenoid | 45 ms | 45 ms | | | 1st shunt release | 40 ms | 40 ms | | | 2 nd and 3 rd release | 20 ms | 20 ms | | Pulse time for circuit-breaker tripping signal | 1st shunt release | > 15 ms | > 15 ms | | | 2 nd and 3 rd release | > 10 ms | > 10 ms | | Charging time for electrical operation | - | <15 s | < 15 s | | Synchronism error between the poles | - | ≤ 2 ms | ≤ 2 ms | | | | | | #### **Short-circuit protection of motors** (fuse protection of drive motors) | Rated voltage
of the motor | Operatin | g voltage | Power consump | tion of the motor | Smallest possible rated current ¹⁾ of the m.c.b. (miniature circuit-breaker) with C-characteristic | |-------------------------------|----------|-----------|-----------------------|-----------------------|---| | V | max. V | min. V | W (at DC) | VA (at AC) | A | | 24 DC | 26 | 20 | 350/500 ²⁾ | - | 8/16 ²⁾ | | 48 DC | 53 | 41 | 350/500 ²⁾ | - | 6/8 ²⁾ | | 60 DC | 66 | 51 | 350/500 ²⁾ | _ | 4/6 2) | | 110 DC | 121 | 93 | 350/500 ²⁾ | - | 2/3 ²⁾ | | 220 DC | 242 | 187 | 350/500 ²⁾ | _ | 1.6 | | 110 AC | 121 | 93 | - | 400/650 ²⁾ | 2/3 2) | | 230 AC | 244 | 187 | _ | 400/650 ²⁾ | 1.6 | | | | | | | | - 1) The current inrush in the drive motor can be neglected due to its very short presence - 2) Values are valid for 3AH1/3AH3, 3AH37, 3AH38 ### Consumption data of releases | Release | Power consumption Operation at | | Tripping ranges | | |---|---------------------------------|---------------------------|---------------------------|---| | | DC
approx. W | AC 50/60 Hz
approx. VA | Tripping voltage
at DC | Tripping voltage
or tripping current
at AC 50/60 Hz | | Closing solenoid 3AY15 10 | 140 | 140 | 85 to 110 % <i>U</i> | 85 to 110 % <i>U</i> | | 1 st shunt release
(without energy store) 3AY15 10 | 140 | 140 | 70 to 110 % <i>U</i> | 85 to 110 % <i>U</i> | | 2 nd shunt release
(with energy store) 3AY11 01 | 70 | 50 | 70 to 110 % <i>U</i> | 85 to 110 % <i>U</i> | | Undervoltage release 3AY11 03 | 20 | 20 | 35 to 0 % <i>U</i> | 35 to 0 % <i>U</i> | | Current-transformer operated release 3AX11 02 (rated normal current 0.5 or 1 A) | - | 10 3) | _ | 90 to 110 % I _a | | Current-transformer operated release 3AX11 04 (tripping pulse \geq 0.1 Ws) | - | - | - | - | | | | | | | ³⁾ Consumption at pickup current (90 % of the rated normal current) and open armature Page Brandenburg Gate, Berlin, Germany Switchgear Factory in Berlin, Germany Annex 41 Inquiry form 42 Contents Configuration instructions 43 Configuration aid Foldout page #### Annex Inquiry form Please copy and return to your Siemens partner or you can use our prompted online configurator under www.siemens.com/energy | Inquiry concerning | |---| | ☐ 3AH1 circuit-breaker
☐ 3AH3 circuit-breaker
☐ 3AH37/38 generator
circuit-breaker | | Please | | ☐ Submit an offer☐ Call us☐ Visit us | | Your address | | Company | | Dept. | | Name | | Street | | Postal code/city | | Phone | | Fax | | E-mail | | Siemens AG | | Dept. | | Name | | Street | | Postal code/city | | Technical Data | | | | Other values | |--|---|----------------------|--|---| | Rated voltage | □ 7.2 kV
□ 17.5 kV | □ 12 kV
□ 24 kV | □ 15 kV
□ 36 kV | □kV | | Rated lightning impulse withstand voltage | □ 60 kV
□ 125 kV | □ 75 kV
□ 170 kV | □ 95 kV
□ 195 kV | □ 110 kV
□ kV | | Rated short-duration power-frequency withstand voltage | □ 20 kV
□ 50 kV | □ 32 kV
□ 70 kV | □ 36 kV
□ 95 kV | □ 38 kV
□ kV | | Rated short-circuit
breaking current | □ 31.5 kA
□ 63 kA | □ 40 kA
□ 72 kA | □ 50 kA | □kA | | Rated normal current | □ 1250 A
□ 4000 A | □ 2000 A
□ 5000 A | □ 2500 A
□ 6300 A | □ 3150 A
□A | | Pole-center distance | □ 210 mm | □ 275 mm | □ 300 mm | □ 350 mm | | Secondary equipmen | t | | | | | For possible combinations s | ee pages 16 to | 22 | | | | Circuit-breaker equipment | ☐ Manual mecha☐ Manual electri☐ Manual operat | cal closing | | | | Motor operating mechanism | □V DC | | □V AC, | _Hz | | Closing solenoid | □V DC | | □V AC, | _Hz | | 1st shunt release | □V DC | | □V AC, | _Hz | | 2 nd shunt release | □V DC | | □V AC, | _Hz | | Current-transformer operated release | □ 0.5 A | □ 1 A | $\square \geq 0.1 \text{ Ws}$ (10 Ω) | $\square \ge 0.1 \text{ Ws}$ (20 Ω) | | Undervoltage release | □V DC | | □V AC, | _ Hz | | | ☐ Without energ | y store | ☐ With energy st | ore | | Auxiliary switch | □ 6 NO + 6 NC | □ 12 NO + 12 NO | | | | Low-voltage connection | □ 24-pole
terminal strip | ☐ 24-pole plug | ☐ 64-pole plug | | | ☐ Mechanical interlocking | | | | | | Operating instructions | □ English | □ German | ☐ French | ☐ Spanish | | Application and other r | equirement | S | ___ Please fill in ☐ Please check off Fax #### You prefer to configure your 3AH1/3AH3 vacuum circuit-breakers on your own? Please follow the steps for configuration and enter the order number in the configuration aid. Alternatively you can also use our prompted online configurator under www.siemens.com/energy Instruction for configuration of the 3AH1 and 3AH3 vacuum circuit-breakers 1st step: Definition of the primary part (see pages 13 to 15) | Please specify the
following ratings: | Possible options: | |---|--| | Rated voltage (U_r) | <i>U</i> _r : 7.2 kV to 36 kV | | Rated lightning impulse withstand voltage (U _p) | $U_{\rm p}$: 60 kV to 195 kV | | Rated short-duration power-frequency with stand voltage (U_d) | U _d : 20 kV to 95 kV | | Rated short-circuit breaking current (I _{sc}) | I _{sc} : 31.5 kA to 72 kA | | Rated normal current (I_r) | <i>I</i> _r : 1250 A to 6300 A | | Pole-center distance | 210 mm to 350 mm | | | | These ratings define the positions 4 to 8 of the order number. 2nd step: Definition of the secondary equipment (see pages 16 to 22) | Please specify the following equipment features: | Possible options: | |--|--| | Release combination (position 9) | Shunt release, current-transformer operated release and undervoltage release | | Closing solenoid
(position 10) | Operating voltages from 24 V DC to 240 V AC | | Operating voltage of the releases (positions 11/12) | Operating voltages from 24 V DC to 240 V AC | | Type of local closing
(position 10) | Mechanical closing,
manual electrical closing | | Type of operating mechanism and operating voltage of a motor, if available (position 14) | Manual operating stored-energy mechanism,
motor operating stored-energy mechanism
with operating voltages from 24 V DC to 240 V AC | | Number of auxiliary contacts (position 15) | 6 NO + 6 NC, 12 NO + 12 NC | | Design of the secondary connection (position 15) | 24-pole terminal strip, 24-pole plug connector,
64-pole plug connector | | Language of the documentation (position 16) | English, German, French, Spanish | | Frequency of the operating voltage of the secondary equipment at AC (position 16) | 50 Hz/60 Hz | | | | These equipment features define the positions 9 to 16 of the order number. 3rd step: Do you have any further requirements concerning the equipment? (Please refer to page 23) Should you still need more options than the possible special equipment like halogen-free and flame-retardant or silicone-free version, condensate protection or an additional rating plate, etc., please contact your responsible sales partner. 1 2 3 4 5 6 7 - 8 9 10 11 12 - 13 14 15 16 3 A H – – + + + + + + + + + + + + 3 A H - -+ + + + + + 3 A H - -+ + + + + + + + + + 3 A H - -+ + + + + + + + + + 3 A H - -+ + + + + + + + + + 3 A H - -+ + + + + + + + + + 3 A H - -+ + + + + + + + + + + + 3 A H - -+ + + + + + + + + + + + 3 A H - -+ + + + + If not stated otherwise on the individual pages of this catalog, we reserve the right to include modifications, especially regarding the stated values, dimensions and weights. Drawings are not binding. All product designations used are trademarks or product names of Siemens AG or other suppliers. If not stated otherwise, all dimensions in this catalog are given in mm. Responsible for <u>Technical contents:</u> Siemens AG, Dept. PTD M C PPM Berlin <u>General editing:</u> Siemens AG, Dept. PTD CC M Erlangen #### Siemens AG Power Transmission and Distribution Medium Voltage Division Nonnendammallee 104 13623 Berlin Germany www.siemens.com/energy For questions concerning Power Transmission and Distribution: You can contact our Customer Support Center 24 hours a day, 365 days a year. Tel.: +49 180/524 70 00 Fax: +49 180/524 24 71 (Calls charged: e.g. 12 Ct/min) E-Mail: support.energy@siemens.com www.siemens.com/energy-support Subject to change without notice Order No. E50001-K1511-A031-A1-7600 Printed in Germany Dispo 31601 KG 04.07 5.0 40 En 102412 6101/C6150 The information in this document contains general descriptions of the technical options available, which do not always have to be present in individual cases. The required features should therefore be specified in each individual case at the time of closing the contract.