VAMP Feeder/Motor

Feeder/Motor Protection Relay VAMP 40

VAMP Feeder/Motor Protection Relay

Main Characteristics

• Complete Protection

Comprehensive selection of protection functions for distribution network overhead line feeders, cable feeders, motor feeders including large motors, capacitor banks and reactors.

Comprehensive Measurements

Wide range of measurement functions including phase and residual currents, residual or line or phase voltage, frequency, current unbalance, maximum demand, negative phase sequence current, active and reactive power and energy according to the primary connection.

Power Quality Assessment

Power quality assessment and analysis including supervision of harmonics up to the 15th order, THD of currents and voltage.

Ultra-fast Arc Protection

Unique integrated arc fault protection functionality for enhanced safety of switchgear and substations to people and property.

Extensive Communication

Large number of supported communication protocols including IEC 60870-5-101, IEC 60870-5-103, Modbus TCP, Modbus RTU, Profibus DP, TCP/IP, SPA-bus, DNP 3.0 and IEC 61850.

Easy Handling and Management

Easy commissioning, configuration and operation of the relays supported by the straight-forward VAMPSET relay management software.

Limited Depth Dimension

The slim casing gives a possibility to install this relay to the secondary equipment compartment which has limited space.

Universal auxiliary power supply

The wide auxiliary power supply, 19-265 V ac/dc, 50/60 Hz makes this relay suitable to every installation.

Application

The protection relays of the VAMP Series are used for the selective protection of overhead line feeders, cable feeders, motor feeders, capacitor banks, reactors and busbars in power system distribution substations, power plants, industrial power systems, marine and offshore installations. Besides a comprehensive range of standard protection functions the VAMP series also offers measurement, primary circuit monitoring and communication functionality.

A unique feature of the VAMP relays is the arc fault protection system integrable into the relays. The extremely fast arc fault protection option adds a new dimension to the total safety of the installation and the reliability of the protection system.

Customer specific configuration is obtained by programming the device using keypad or VAMPSET software.

After a network fault the relays support a subsequent fault analysis by providing event sequence (200 events) recordings, fault value registration and disturbance recorder capability.

All this functionality and a comprehensive set of supported communication protocols make the VAMP Series an outstanding product portfolio on the world market of power system protection and control equipment.

Measurement and Monitoring Functions

The VAMP 40 offers a complete set of measurement functions to replace the conventional metering functions of traditional switchgear and control gear installations. The measurement functions cover currents, residual or phase to phase or phase to earth voltages. The voltage measurement vary according to the connected voltage that is either residual voltage ($U_{\rm ll}$) or phase to phase voltage ($U_{\rm ll}$) connection. The measured information can be read via the communication bus or display.

Besides the measurement functions VAMP 40 also encompasses a set of system supervision functions. All current circuits are continuously supervised, as are the trip circuits from the relay to the circuit breaker trip coils. The wear and tear of the circuit breaker is also continuously monitored providing an alarm when the circuit breaker needs maintenance.

Power Quality Assessment

The power quality of electrical networks has become increasingly important in modern society. Sophisticated loads, such as computers and automation systems, require an uninterrupted supply of "clean" electricity.

The VAMP 40 feeder and motor protection relay is provided with integrated power quality measuring and analyzing functions, which help catching possible variations in the quality of the distributed power. The relay supervises harmonics of phase currents and one voltage from the 2nd to 15th order and the THD (Total Harmonic Distortion).

Many functions in modern society rely heavily on electric energy and therefore the quality of the energy supply is gaining increased importance

Functionality

Protection functions			
IEEE no	IEC symbol	Function name	
50/51	3I>, 3I>>, 3I>>>	Overcurrent protection	IEC, IEE
50N/51N	I ₀ >, I ₀ >>, I ₀ >>>, I ₀ >>>	Earth fault protection	prograi
67N	$I_{0\phi}>, I_{0\phi}>>$	Directional earth fault protection (1	curves
67NT	$I_{0T}>$	Intermittent transient earth fault protect	ion (1
87N	I_{0REF}	Restricted earth fault protection	
46R	$I_2/I_1>$	Broken line protection	
46	$I_2>$	Current unbalance protection	
47	$I_2>>$	Incorrect phase sequence protection	ı
48	Ist>	Stall protection	
66	N>	Frequent start protection	
37	I<	Undercurrent protection	
49	T>	Thermal overload protection	
32	P←	Reverse power, 1 phase	
59C	Uc>	Capacitor overvoltage protection	
59N	$U_0>, U_0>>$	Zero sequence voltage protection (1	
59	U>, U>>, U>>>	Overvoltage protection, 1-phase (2	
27	U<, U<<, U<<<	Undervoltage protection, 1-phase (2)	
68	$I_{2f}>$	Inrush and cold load detection	
79		Auto reclose function	
50BF	CBFP	Circuit-breaker failure protection	
50ARC	ArcI>	Arc fault protection (3	
50NARC	ArcI ₀ >, ArcI ₀₂ >	Arc fault protection (3	
		Capacitor bank unbalance protection	n
86		Latched trip	
99		Programmable stages 1 8	

		8	
M	Measurement and monitoring functions		
31		Three-phase current	
I_0		Neutral current	
I_2		Current unbalance	
$I_{\rm L}$		Average and maximum demand current	
U_0		Residual voltage	
$U_{\rm I}$.1 / U ₁₂	Phase to earth and phase to phase voltages (2	
P		Active power (2	
Q		Reactive power (2	
S		Apparent power (2	
E-	+, E-	Active energy, exported / imported (2	
Ec	1+, Eq-	Reactive energy, exported / imported (2)	
PF	י	Power factor	
f		System frequency	
		Phasor diagram views of currents,	
		residual (1 or phase or line voltages (2	
		2nd to 15th harmonics and THD of currents	
		Condition monitoring CB wear	
		Condition monitoring CT supervision	
		Trip Circuit Supervision (TCS)	
	\supset	Disturbance recorder	
		Temperature	
		CB control	

Communication		
	IEC 60870-5-101	
	IEC 60870-5-103	
	Modbus TCP	
	Modbus RTU	
	Profibus DP	
	SPA-bus	
	DNP 3.0	
	DNP 3.0 TCP	
	IEC 61850	
	Human Machine Interface, display	
	Human Machine Interface, PC	
	Hardwaro	

		Hardware
	HARMONICS of IL1	Number of phase current CT's 3
45 %	40	Number of residual current CT's 2
40 %	40	Number of voltage input VT's 1
35 % 30 %	30	Number of digital inputs 2
25 %	22	Number of trip outputs 4
20 %	17	Number of alarm outputs 1
15 % 10 %	12	Internal Failure, IF (NO/NC) 1
5 %	0 0 0 0 0 0 0 2	RTD inputs 4-16 ⁽³⁾
	2 3 4 5 6 7 8 9 10 11 12 13 14 15	TID INDUIS

- Example of harmonics content obtained from a VAMP 40 relay.
- 1) with zero sequence voltage connection 2) with phase to phase or phase to earth voltage connection
- 3) option

mmable

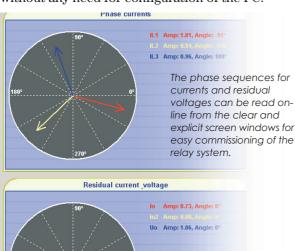
VAMP Feeder/Motor Protection Relay

Arc Protection

Whether the time-grading or blocking based protection coordination principle is used, the traditional protection systems may not provide fast enough protection of substation faults. Further, high-impedance type of earth-faults may cause prolonged operation times of earth-fault relays leading to the significant release of the arcing energy. These facts pose a considerable risk to human beings and economical assets. By applying a modern, high-speed arc protection system the damage may be considerably reduced. Such an arc protection system is an optional feature incorporatable in all current measuring VAMP relays.

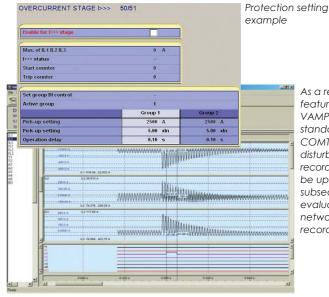
The VAMP relays measure the fault current. If the arc protection interface option is selected the relays also

measure light via arc sensor channels monitoring the whole switchgear. Should an arcing fault occur in the switchgear the arc protection system provides an extremely fast tripping of the circuit breaker.


Traditional protection relay systems do not provide fast enough protection in an arc-fault situations.

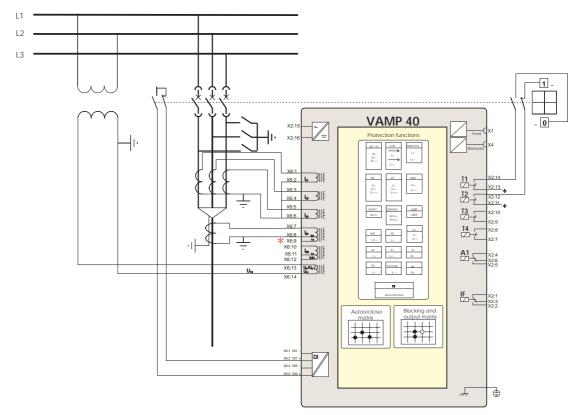
The VAMP 40 protection relay with integrated arc protection also provides a cost efficient high-speed MV busbar protection.

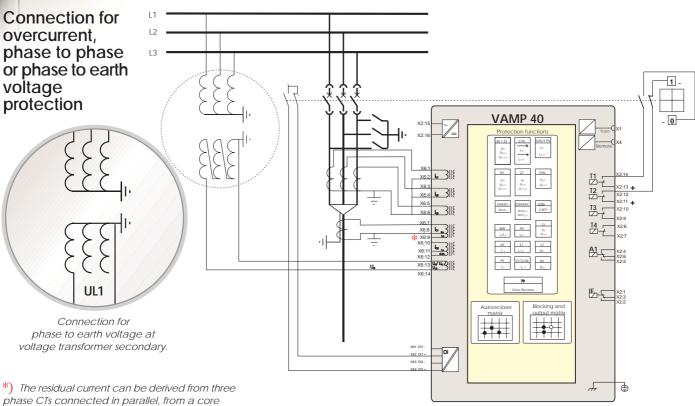
VAMPSET Setting and Configuration Tool


VAMPSET is a user-friendly, free-of-charge relay management software for setting, parameterization and configuring of VAMP relays. Via the VAMPSET software relay parameters, configurations and recorded relay data can be swapped between the operator's PC and the VAMP relays. Supporting the COMTRADE format VAMPSET also incorporates tools for analyzing relay events, waveforms and trends from data recorded by the relays, e.g. during a network fault situation.

Using a standard RS cable the PC running VAMPSET connects to the front or rear port of the VAMP relays. The VAMPSET software also supports TCP/IP communication via an optional 10Base-T connection. Featuring true multi-language support the software runs on Windows XP/2000/NT and Windows 98/95 without any need for configuration of the PC.

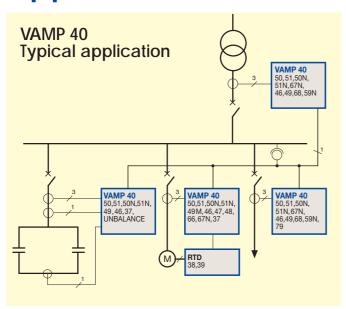
The motor start-up register stores the motor start-up values (start current, duration etc.) significantly facilitating the correct setting of the relay even if critical motor data are unavailable from the manufacturer.

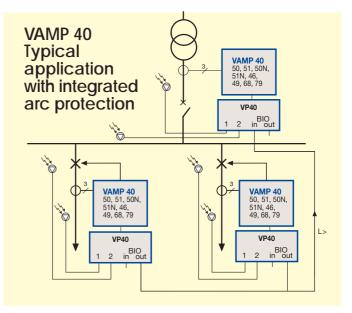



As a regular feature of the VAMP relays standard COMTRADE type disturbance recording files can be uploaded for subsequent evaluation of any network event recorded.

Connection Diagrams

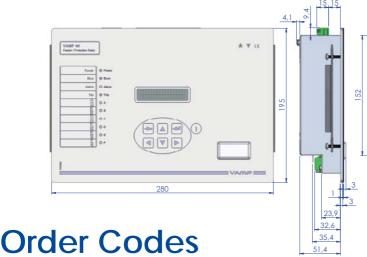
Connection for overcurrent, directional earth fault and residual voltage protection

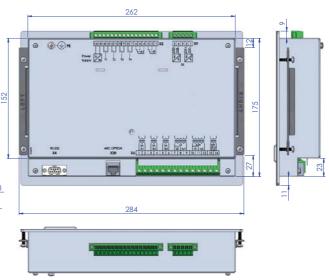




the three phase currents.

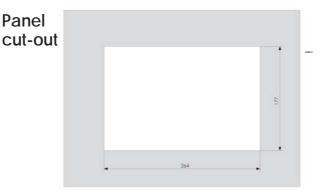
balance cable CT or it can be calculated from


Applications



Dimensional Drawings

The slim casing gives a possibility to install this relay to the secondary equipment compartment which has limited space.



T	
-	262

Order Code	Description	NOTE
VAMP 40	Feeder / motor protection relay VAMP Ltd	
Accessories		
VEA3CG	Ethernet interface module	
VPA3CG	Profibus interface module	
VSE001	Fiber optic interface module	
VSE002	RS485 interface module	
VSE004	VAMP 40 RS-485 module	
VSE005-1	Ethernet and RS-485 module	
VSE006	IEC61850 module	

VPA3CG	Profibus interface module	
VSE001	Fiber optic interface module	
VSE002	RS485 interface module	
VSE004	VAMP 40 RS-485 module	
VSE005-1	Ethernet and RS-485 module	
VSE006	IEC61850 module	
VX003-3	Programming cable (VAMPSET)	Cable length 3 m
VX028-3	Interface cable to VPA3CG (Profibus adaptor)	Cable length 3 m
VX030-3	Interface cable to VEA3CG (Ethernet adaptor)	Cable length 3 m
VX032-3	Rear panel programming cable	Cable length 3 m
VYX256A	Optional seal for IP54	
VP40	Arc option	
VA1DA-6	Arc sensor	Cable lenght 6 m
DI-934MB	RTD input module	DataQ Instruments Inc.
Adam 4015-B	RTD input module	Advantech Co., Ltd

Technical Data, **Tests and Environmental Conditions**

Measuring circuitry

ivicasuming circum	/
Rated current I_N	$5~\mathrm{A}$ (configurable for CT secondaries 1 – 10 A)
- Current measuring range	0250 A
- Thermal withstand	20 A (continuously)
	100 A (for 10 s)
	500 A (for 1 s)
- Burden	< 0.2 VA
Rated current I _{0N}	1/5 A
- Current measuring range	050 A / 10 A
Rated current I _{02N}	0.2/1 A
- Current measuring range	010 A / 2 A
Rated voltage U_{0N} / U_{N}	100 V (configurable for
	VT secondaries 50 – 120 V)
- Voltage measuring range	0 - 175 V
- Continuous voltage withstand	250 V
- Burden	< 0.5V A
Rated frequency f_N	45 - 65 Hz
- Frequency measuring range	16 - 75 Hz
Terminal block:	Maximum wire dimension:
- Solid or stranded wire	4 mm ² (10-12 AWG)

Auxiliary voltage

rianiiai y voitago	
Rated voltage U _{AUX}	19 - 265 V ac/dc
	For rated voltages 24 \dots 240 V ac /dc
Power consumption	< 7 W (normal conditions)
	< 15 W (output relays activated)
Max. permitted	
interruption time	< 50 ms (110 V dc)
Terminal block:	Maximum wire dimension:
- Phoenix MVSTBW or equivalent	2.5 mm ² (13-14 AWG)

Digital inputs

Qty	2 pcs
Rated voltage	18 - 265 Vdc

Digital outputs

Trip relays	4 pcs
Alarm relays	1 pc
Internal fault relay	1 pc

Casing

9	
Dimensions~(W~x~H~x~D)	280 x 195 x 55 mm
Degree of protection	IP 54
Weight	3 kg (terminal, package and manual)

Disturbance tests

Disturbance tests	
Emission	EN 61000-6-4 / IEC 60255-26
- Conducted	EN55011 / IEC 60255-25 0.15 - 30 MHz
- Emitted	EN55011 / IEC 60255-25 30 - 1000 MHz
Immunity	EN 61000-6-2 / IEC 60255-26
- Static discharge (ESD)	EN 61000-4-2 class IV / IEC 60255-22-2
	8 kV contact discharge
	15 kV air discharge
- Fast transients (EFT)	EN 61000-4-4 class IV /
	IEC 60255-22-4, class A
	4 kV, 5/50 ns, 2.5 / 5 kHz, +/-
- Surge	EN 61000-4-5 class IV / IEC 60255-22-5
	$4~\mathrm{kV},1.2/50~\mu\mathrm{s},$ line-to-earth
	2 kV, 1.2/50 $\mu s,$ line-to-line
- Conducted HF field	EN 61000-4-6 class III / IEC 60255-22-6
	0.15 - 80 MHz, 10 V
- Emitted HF field	EN 61000-4-3 class III / IEC 60255-22-3
	80 - 1000 MHz, 10 V/m

Test voltages

Insulation test voltage	IEC 60255-5
	2 kV, 50 Hz, 1 min
Surge voltage	IEC 60255-5
	5 kV, 1.2/50 us, 0.5 J

Mechanical tests

Vibration	IEC 60255-21-1, class I
Shock and pump	IEC 60255-21-2, class I

Environmental conditions

Operating temperature	-10 to +65 °C
Transport and	
storage temperature	-40 to +70 °C
Relative humidity	< 75% (1 year, average value)
	< 90% (30 days per year,
	no condensation permitted)

 ϵ

Vamp Ltd is a Finnish company specialized in developing and manufacturing of protection relays needed for the electrical power generation and distribution system. Vamp Ltd offers complete MV protection, arc flash protection as well as measuring and monitoring units.

Our success is based on competitive standard products, constant development by our designers possessing experience from three protection relay generations, our long-term partnerships, flexibility and 24 hour care of our customers.

Our organization has been audited and found to be in accordance with the requirements of the ISO 9001:2000 management system.

Vamp Ltd P.O.Box 810 FI-65101 VAASA Finland Visiting address: Vaasa Airport Park Yrittäjänkatu 15 Vaasa, Finland Tel: +358 20 753 3200 Fax: +358 20 753 3205 Email: vamp@vamp.fi http:// www.vamp.fi

We reserve the rights to product alterations without prior notice. Copyright © Vamp Ltd. All trademarks are the property of their respective holders.

